Load-Sensing System mit adaptiver Pumpenregelung

Bei der Fakultät für Maschinenbau der Technischen Universität Carolo-Wilhelmina zu Braunschweig

> zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

> > eingereichte

Dissertation

von Dipl.-Ing. Björn Grösbrink aus Hamburg

Eingereicht am: 06.08.2010 Mündliche Prüfung am: 16.12.2010

Referenten: Prof. Dr.-Ing. Dr. h.c. H.-H. Harms

Prof. Dr.-Ing. J. Weber

Vorsitzender: Prof. Dr.-Ing. P. Eilts

Forschungsberichte des Instituts für Landmaschinen und Fluidtechnik

Björn Grösbrink

Load-Sensing System mit adaptiver Pumpenregelung

Shaker Verlag Aachen 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Braunschweig, Techn. Univ., Diss., 2010

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-0369-7 ISSN 1616-1912

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Landmaschinen und Fluidtechnik der Technischen Universität Braunschweig.

Mein besonderer Dank gilt meinem Doktorvater, Prof. Dr.-Ing. Dr. h.c. H.-H. Harms, für die Ermöglichung der Promotion. Unter seiner Leitung konnte ich ein von der Deutschen Forschungsgemeinschaft gefördertes Projekt bearbeiten, auf dessen Ergebnissen die vorliegende Dissertation aufbaut. Insbesondere für seinen fachlich und menschlich sehr angenehmen Führungsstil und seine fortwährende Unterstützung möchte ich mich bei ihm an dieser Stelle herzlich bedanken!

Weiterhin danke ich meinem Mitberichterstatter Prof. Dr.-Ing. J. Weber für die Durchsicht meiner Arbeit und die wertvollen Hinweise und Anregungen. Prof. Dr.-Ing. P. Eilts danke ich für die Übernahme des Prüfungsvorsitzes.

Den damaligen Mitarbeitern am Institut möchte ich ebenfalls einen besonderen Dank aussprechen. Nicht nur der stetige Gedankenaustausch zwischen den wissenschaftlichen Mitarbeitern, sondern auch die gute Zusammenarbeit mit der Werkstatt und der Messtechnik sowie dem Sekreteriat waren sehr hilfreich und haben immer Spaß gemacht.

Des Weiteren bedanke ich mich bei allen Studierenden die zum Gelingen dieser Arbeit beigetragen haben.

Ein herzliches Dankeschön gilt meiner Lebensgefährtin Skady für ihre Unterstützung und ihr Verständnis während des Entstehens dieser Dissertation. Meinen Eltern danke ich für die jahrelange Unterstützung in allen Lebenslagen, wodurch sie den Grundstein für diese Arbeit gelegt haben.

Wismar, im August 2011

Björn Grösbrink

Inhaltsverzeichnis VII

Inhaltsverzeichnis

1	Einl	eitung.		1
2	Hyd	lrauliks	systeme für Arbeitsantriebe mobiler Arbeitsmaschinen	3
	2.1	Grund	llegende Schaltungskonzepte	3
	2.2	Elektr	ohydraulische Schaltungskonzepte	12
	2.3	Motiv	ation und Zielsetzung der Arbeit	17
3	Beso	chreibu	ng des entwickelten Hydrauliksystems	20
	3.1	System	naufbau	20
	3.2	Funkti	ionsprinzip	23
4	Gru	ndlage	n und Anwendungen adaptiver Regelungen	26
	4.1	Grund	llagen und thematische Abgrenzung	26
	4.2	Anwei	ndungen und Verfahren ablösender Regelungen	29
5	The	oretiscl	he Untersuchungen und Betrachtungen	34
	5.1	Model	llbildung	34
		5.1.1	Pumpe mit Pumpenreglern	35
		5.1.2	Wegeventil mit Individualdruckwaage	40
		5.1.3	Verbraucher	45
		5.1.4	Gesamtsystem	46
	5.2	Entwi	cklung einer Regelungsstruktur	49
		5.2.1	Bedarfsstromsteuerung	49
		5.2.2	Druckdifferenzregler	51
	5.3	Ablöse	ende Pumpenregelung	57
		5.3.1	Allgemeine Betrachtung	58

9	Lite	raturve	rzeichnis	120	
8	Zusa	ammen	fassung und Ausblick	117	
7	Hinv	weise fü	ir die Praxis	112	
		6.6.2	Power-Beyond Betrieb	109	
		6.6.1	Maximaldruckabschneidung	107	
	6.6	Beson	dere Betriebszustände	107	
	6.5	Systen	neffizienz	102	
	6.4	Führur	Führungsübertragungsverhalten		
	6.3	Störüb	ertragungsverhalten	92	
	6.2	Unters	uchung und Weiterentwicklung der Adaptionsschaltung	86	
		6.1.5	Sensoren und Datenverarbeitung	85	
		6.1.4	Verstellpumpe mit Schwenkwinkelreglern	83	
		6.1.3	Druckdifferenzsensor	81	
		6.1.2	Wegeventile	80	
		6.1.1	Verbraucher	78	
	6.1	Versuc	rhsaufbau	76	
6	Exp		telle Untersuchungen des Systemverhaltens		
		5.4.2	Wirkungsgrade des untersuchten Systems		
		5.4.1	Wirkungsgrade von Load-Sensing Systemen		
	5.4	Energieeinsparpotenzial			
		5.3.2	Dynamisches Verhalten der Pumpenregler	62	

Formelzeichen und Indizes

Zeichen	Einheit	Größe
A	mm²	Fläche
A_S	mm²	Stirnfläche Druckwaagenschieber
A_{WV}	mm²	Durchflussquerschnitt Wegeventil
b	mm	Breite
c_{F}	N/mm	Federsteifigkeit
$c_{F,FSR}$	N/mm	Federsteifigkeit der Förderstromreglerfeder
$c_{F,EP}$	N/mm	Federsteifigkeit des elektro-proportionalen Pumpenreglers
e_{i}		Regelabweichung i
F	N	Kraft
$F_{\text{Str\"o}}$	N	Strömungskraft
FK_i		Adaptionsparameter integraler Regleranteil
FK_p		Adaptionsparameter proportionaler Regleranteil
F_{M}	N	Magnetkraft
h	mm	Höhe
i_{M}	A	Strom für Proportionalmagnet
1	mm	Länge
l_0	mm	Federlänge entspannt
l_{vor}	mm	Federlänge vorgespannt
n_{ist}	1/min	Istdrehzahl
n_P	1/min	Pumpenantriebsdrehzahl
n _{soll}	1/min	Solldrehzahl

Zeichen	Einheit	Größe
p	MPa	Druck
$p_{\mathrm{DW,SR}}$	MPa	Druck auf Stirnfläche Druckwaagenschieber in Schließrichtung
p_P	MPa	Pumpendruck
p_L	MPa	Lastdruck
$p_{L,max} \\$	MPa	maximaler Lastdruck
p_{St}	MPa	Steuerdruck
$p_{\rm V}$	MPa	Vorsteuerdruck Wegeventile
p_{WV}	MPa	Druck direkt vor Wegeventil
P _{aus}	kW	Ausgangsleistung
P_{ein}	kW	Eingangsleistung
P_{ist}	kW	Istleistung
P_{soll}	kW	Sollleistung
P_{Verl}	kW	Verlustleistung
Q	l/min	Volumenstrom
Q_{eff}	l/min	effektiver Pumpenvolumenstrom
Q_{EP}	l/min	Volumenstrom am elektro-proportionalen Regler
$Q_{\text{ges,soll}}$	l/min	Sollvolumenstrom
$Q_{\text{ges,soll,korr}}$	l/min	korrigierter Sollvolumenstrom
Q_{FSR}	l/min	Volumenstrom am Förderstromregler
Q_{L}	l/min	Lastvolumenstrom
$Q_{L,i}$	l/min	interner Leckagevolumenstrom
$Q_{L,e}$	l/min	externer Leckagevolumenstrom
Q_P	l/min	Pumpenvolumenstrom
$Q_{St} \\$	l/min	Steuerölvolumenstrom

Zeichen	Einheit	Größe
Q _{SZ}	l/min	Pumpenstellzylindervolumenstrom
Q_{th}	l/min	theoretischer Pumpenvolumenstrom
r		Regelgröße
s_{WV}	mm	Position Wegeventilschieber
S _{WV,max}	mm	maximale Position Wegeventilschieber
t_0	S	Startzeitpunkt
$t_{\rm E}$	S	Endzeitpunkt
$T_{\ddot{O}l}$	°C	Öltemperatur
u		Stellgröße
U	V	Spannung
u_{ist}		Ausgangswert Fuzzy-Regler
u_R		Reglerausgangssignal
u_S		Steuerungsausgangssignal
V_0	m/s	Geschwindigkeit
V_{P}	cm ³	Pumpenhubvolumen
$V_{P,EP}$		Sollwert Pumpenhubvolumen elektro-proportionaler Regler
$V_{P,FSR}$		Sollwert Pumpenhubvolumen Förderstromregler
$V_{P,\text{max}}$	cm ³	maximales Pumpenhubvolumen
$V_{P,soll}$	cm ³	Sollwert Pumpenhubvolumen
$V_{P,BS,soll} \\$		Sollwert Pumpenhubvolumen aus Bedarfsstromsteuerung
$V_{P,Reg,soll} \\$		Sollwert Pumpenhubvolumen aus Druckdifferenzregelung
$V_{Q,EP}$		Volumenstromverstärkung elektro-proportionaler Regler
$V_{Q,FSR}$		Volumenstromverstärkung Förderstromregler
$W_{\hat{i}}$		Führungsgröße i bzw. Sollwert i

Zeichen	Einheit	Größe
$\overline{\mathbf{x}_{i}}$		Stellsignal Wegeventil i
x_S	mm	Position Druckwaagenschieber
$X_{S,EP}$	mm	Schieberposition elektro-proportionaler Regler
$X_{S,FSR}$	mm	Schieberposition hydraulisch-mechanischer Förderstromregler
X _{SZ}	mm	Position Pumpenstellzylinder
$\mathbf{x}_{\mathrm{Vor}}$	Mm	Federvorspannung
$y_{\rm i}$		Regelgröße i bzw. Istwert i
α		Durchflusszahl
$\alpha_{P,ist}$		tatsächlicher Pumpenschwenkwinkel
$\alpha_{P,\text{max}}$		maximaler Pumpenschwenkwinkel
α_P		Pumpenschwenkwinkel
α_{soll}		Stellsignal elektro-proportionale Schwenkwinkelverstellung
Δp	MPa	Druckdifferenz
Δp_{LS}	MPa	Load-Sensing Druckdifferenz
$\Delta p_{LS,ist}$	MPa	Load-Sensing Istdruckdifferenz
$\Delta p_{LS,soll}$	MPa	Load-Sensing Solldruckdifferenz
Δp_{aLS}	MPa	Load-Sensing Druckdifferenz des adaptiven Systems
$\Delta p_{aLS,ist}$	MPa	Load-Sensing Istdruckdifferenz des adaptiven Systems
$\Delta p_{aLS,soll}$	MPa	Load-Sensing Solldruckdifferenz des adaptiven Systems
Δp_{kLS}	MPa	Load-Sensing Druckdifferenz des konventionellen Systems
$\Delta p_{kLS,ist}$	MPa	Load-Sensing Istdruckdifferenz des konventionellen Systems
$\Delta p_{kLS,soll}$	MPa	Load-Sensing Solldruckdifferenz des konventionellen Systems
$\Delta p_{Regel,\;IDW}$	MPa	Regeldruckdifferenz der Individualdruckwaage

Zeichen	Einheit	Größe
Δp_{Verl}	MPa	Druckdifferenz aufgrund von Druckverlusten
Δp_{Zus}	MPa	zusätzliche bzw. überschüssige Druckdifferenz
$\Delta \Delta p_{aLS}$	MPa	Regelabweichung des adaptiven Load-Sensing Systems
η	Ns/m^2	dynamische Viskosität
η_{Pumpe}		Pumpenwirkungsgrad
η_{reg}		regelungsbedingter Systemwirkungsgrad
η_{Syst}		Systemwirkungsgrad
η_{Verbr}		Verbraucherwirkungsgrad
η_{vol}		volumetrischer Wirkungsgrad
μ		Zugehörigkeitswert zu Fuzzy-Mengen
ρ	kg/m^3	Dichte
τ	N/m^2	Schubspannung

Abkürzungen

Abkürzung	Bedeutung	
CAN	Controller Area Network	
CC	Closed-Center	
CFD	Computational Fluid Dynamics	
const.	Konstante	
DV	Dauerverbraucher	
DW	Druckwaage	
EFM	Elektrohydraulisches Flow Matching	
EP-Regler	elektro-proportionaler Förderstromregler	
eh	elektrohydraulisch	
FL	Frontlader	
FSR	hydraulisch-mechanischer Förderstromregler	
hm	hydraulisch-mechanisch	
IDW	Individualdruckwaage	
LS	Load-Sensing	
OC	Open-Center	
WV	Wegeventil	