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Approximation and Regularity of Stochastic PDEs
(Abstract)

Felix Lindner

Stochastic partial differential equations (SPDEs, for short) constitute a wide and quickly
growing area of research within mathematics, combining the fields of stochastic analysis and
partial differential equations (PDEs, for short). In this thesis we study specific questions
concerning the discretization and approximation of linear parabolic SPDEs and—intimately
connected with it—the regularity of the solutions. SPDEs of parabolic type or stochastic
evolution equations are usually treated from an abstract point of view as ordinary stochastic
differential equations (SDEs, for short) in an infinite-dimensional state space. We are mainly
interested in SPDEs with additive noise of the following form

dXt = AXt dt + GdMt, t ∈ [0, T ], x0 ∈ H, (1)

where H is a Hilbert space, A is the generator of a strongly continuous contraction semigroup
on H, G is a linear operator and M = (Mt)t∈[0,T ] is a martingale with values in H or in
another Hilbert space U . We use the semigroup approach to SPDEs according to Da Prato,
Zabczyk [2] and Peszat, Zabzcyk [7]. A weak solution X = (Xt)t∈[0,T ] to equation (1) satisfies

〈Xt, ζ〉H = 〈x0, ζ〉H +
∫ t

0
〈Xs, A

∗ζ〉H ds + 〈GMt, ζ〉H

for all ζ ∈ D(A∗), t ∈ [0, T ].
The thesis consists of two main parts, one of which—Chapter 2—is concerned with the

so-called weak order of convergence of a space-time discretization scheme for an equation of
type (1), where M is an infinite dimensional Lévy process. The investigations in the second
part—Chapters 3 and 4—are motivated by the question whether adaptive and other nonlinear
approximation methods for SPDEs pay off in the sense that they admit better convergence
rates than uniform appoximation methods. In Chapter 3 we prove a result on the spatial
regularity of the solution of an equation of type (1) within a certain scale of Besov spaces
that is closely connected to the order of convergence of nonlinear approximation methods. In
Chapter 4 we derive an explicit upper bound for the spatial Sobolev regularity of the solution,
which restricts the order of convergence of uniform approximation methods. In what follows
we give short summaries of the single chapters.

Chapter 1 provides the theoretical foundations, based on which the investigations in the
following chapters are developed. In Section 1.1 we collect basic notations, definitions and
results concerning function spaces, such as Sobolev-Slobodeckij and Besov Spaces. Essential
notions concerning random variables and stochastic processes in Hilbert spaces are described
in Section 1.2, and an introduction to stochastic integration in Hilbert spaces is given Section
1.3. In Section 1.4 we state basic results concerning SPDEs of parabolic type.
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In Chapter 2 we study weak order of convergence of a (uniform) space-time discretization
scheme for an equation of type (1). Usually, the driving process M = (Mt)t∈[0,T ] is a Wiener
process, and the majority of papers and books concerning SPDEs is restricted to such Gaus-
sian noise models. There is, however, an increasing interest in more general, not necessarily
Gaussian noise models, compare, e.g. Peszat, Zabczyk [7]. We consider an infinite dimen-
sional non-Gaussian Lévy process as driving noise in (1). For a bounded domain O ⊂ Rd we
investigate the following equation in H = L2(O),

dXt = AXt dt + Q1/2 dZt, X0 = x0 ∈ H, t ∈ [0, T ]. (2)

Here Z = (Zt)t∈[0,T ] is an impulsive cylindrical process and the operator Q describes the
spatial covariance structure of the noise; we assume that A−α has finite trace for some α > 0
and that AβQ is bounded for some β ∈ (α − 1, α]. A discretized solution (Xn

h )n∈{0,1,...,N} is
defined by the finite element method in space (parameter h > 0) and an implicit Euler scheme
in time (parameter Δt = T/N). For ϕ ∈ C2

b (H;R) we derive an integral representation for
the weak error |Eϕ(XN

h ) − Eϕ(XT )| and prove that

|Eϕ(XN
h ) − Eϕ(XT )| = O(h2γ + (Δt)γ)

where γ < 1−α+β. A similar discretization scheme has been studied by Debussche, Printems
[3], but there the equation was driven by a cylindrical Wiener process. The main technical
difference between [3] and our considerations lies in the fact that the impulsive cylindrical pro-
cess Z is a purely discontinuous Hilbert space-valued martingale, while the cylindrical Wiener
process is continuous. As a consequence, the main tools for deriving a suitable representation
formula of the approximation error—the Itô formula and (connected with it) the backward
Kolmogorov equations for certain processes associated with the solutions of the SPDE and
their discretizations—are completely different in the paper [3] and for equation (2). The main
task therefore is to find manageable expression for the approximation error, which allows
estimates using techniques similar to those in [3]. We are able to obtain the same order of
convergence as in the case of a cylindrical Wiener process. The results in this chapter are
based on a joint paper with R.L. Schilling [6].

In Chapter 3 the scale of Besov spaces

Bα
τ,τ (O), α > 0,

1
τ

=
α

d
+

1
p
, p ≥ 2 fixed, (3)

is used to study the spatial regularity of the solutions of linear parabolic SPDEs with Gaus-
sian noise on bounded Lipschitz domains O ⊂ Rd. The results in this chapter come from a
cooperation within the research project ‘Adaptive wavelet methods for SPDEs’ of the DFG
Priority Program 1324, see the joint paper with Cioica et al. [1]. It is well known that the
smoothness of a target function u ∈ Lp(O) within the Sobolev scale W s

p (O), s ≥ 0, char-
acterizes the convergence rate of uniform approximation schemes if the approximation error
is measured in Lp(O). The smoothness of u ∈ Lp(O) in the Besov scale (3) determines the
order of convergence that can be achieved by nonlinear approximation schemes, such as best
n-term wavelet approximation. Roughly speaking, the equation we consider in Chapter 3 is
of type (1), where M = (Mt)t∈[0,T ] is a cylindrical Wiener process. However, the ‘Lp theory
for SPDEs on Lipschitz domains’ by K.-H. Kim [5], which serves as a theoretical basis for our
considerations, differs from the semigroup approach according to Da Prato, Zabczyk [2] and
Peszat, Zabzcyk [7] considerably. Our result has the following structure: If

X ∈ Lp(Ω × [0, T ],PT ,P⊗ λ; W s
p (O))
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and if the the operator G is sufficiently regular, then

X ∈ Lτ (Ω × [0, T ],PT ,P⊗ λ; Bα
τ,τ (O))

for certain α > s and 1/τ = α/d+1/p. Here (Ω,A,P) is the underlying probability space, PT

is the predictable σ-algebra and λ denotes Lebesgue measure on [0, T ]. The proof is based on
a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet
expansions. This result holds also for more general linear equations including, in particular,
the case of multiplicative noise.

If the spatial regularity of X = (Xt)t∈[0,T ] in the Sobolev scale W s
2 (O), s ≥ 0, is strictly

smaller than the spatial regularity in the Besov scale Bα
τ,τ (O), α > 0, 1/τ = α/d + 1/2—for

instance due to singularities at the boundary—this indicates that nonlinear approximation
w.r.t. the space variable really pays off. In Chapter 4 we show that under certain assumption
this is indeed the case. We consider an equation of type (1) where M = (Mt)t∈[0,T ] is a Wiener
process, x0 = 0 and A : D(A) ⊂ L2(O) → L2(O) is the Laplace operator on a polygonal
domain O ⊂ R2 with zero Dirichlet boundary condition. Assuming sufficient spatial regularity
of the driving noise, we prove that the solution process can be decomposed into a regular part
with spatial L2-Sobolev regularity of at least order 2 and a singular part whose spatial L2-
Sobolev regularity is restricted due to the shape of the domain O. In the deterministic case
this is a classical result by P. Grisvard [4]. The main task in the stochastic case is to handle
the time-irregularity of M = (Mt)t∈[0,t]. This irregularity has the consequence that the regular
and the irregular part of the solution are P-almost surely generalized functions w.r.t. the time
variable t. Based on this decomposition we are able to prove that, for P-almost all ω ∈ Ω,

X(ω) /∈ L2

(
[0, T ],B([0, T ]), λ; W r

2 (O)
)
, if r > 1 +

π

γmax
,

where γmax is the largest interior angle at a corner of ∂O. Once combined with the result of
Chapter 3, we obtain examples where the spatial regularity in the Sobolev scale W s

2 (O), s ≥ 0,
is strictly smaller that the regularity in the Besov scale Bα

τ,τ (O), α > 0, 1/τ = α/d + 1/2.
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