Integration kapazitiver Silizium-Mikrofone in ein Chip Scale Package

Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwissenschaftlich-Technischen Fakultät II - Physik und Mechatronik der Universität des Saarlandes

von

Matthias Winter

Saarbrücken

2011

Tag des Kolloquiums: 15. März 2011

Dekan:

Univ.-Prof. Dr. rer. nat. H. Seidel

Mitglieder des

Prüfungsausschusses: Univ.-Prof. Dr.-Ing. M. Nienhaus Univ.-Prof. Dr. rer. nat. H. Seidel Univ.-Prof. Dr. rer. nat. G. Wachutka Dr.-Ing. F. Felgner Aktuelle Berichte aus der Mikrosystemtechnik Recent Developments in MEMS

Band 17

Matthias Winter

Integration kapazitiver Silizium-Mikrofone in ein Chip Scale Package

> Shaker Verlag Aachen 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Saarbrücken, Univ., Diss., 2011

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-0114-3 ISSN 1862-5711

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Integration eines kapazitiven Silizium-Mikrofon-Chips in ein Chip Scale Package (CSP).

Mikrofone, die mit Hilfe der Standard-Silizium-Technologie hergestellt werden, ersetzen immer mehr die Elektret-Kondensator-Mikrofone. Diese Mikrofone nutzen eine elektrisch geladene Polymerschicht als dauerhafte Phantomspannungsquelle, welche sich bei einem äußeren Temperaturanstieg entladen kann, was zu einem Verlust der elektroakustischen Eigenschaften des Mikrofons führt.

In dieser Arbeit werden die mechanischen Auswirkungen des Gehäuses auf die Eigenschaften des Mikrofons untersucht, sowohl analytisch als auch mit Hilfe der Finite Elemente Methode (FEM). Hauptaugenmerk wird auf die Flip-Chip-Montage des Mikrofon-Chips gerichtet. Die Optimierung betrifft insbesondere die mechanische Stabilität der Verbindung und deren Auswirkung auf die Verspannung der Membran des Mikrofon-Chips.

Des Weiteren wird die Geometrie des Gehäuses im Hinblick auf ihre akustischen Eigenschaften optimiert. Dazu wird ein analoges elektro-akustisch-mechanisches Netzwerkmodell erstellt. Mit diesem werden die akustischen Eigenschaften von verschiedenen Gehäusekonzepten berechnet und miteinander verglichen. Erstmalig wird durch die Schaffung eines akustischen Kanals durch das Gehäuse eine Linearisierung des Frequenzgangs eines Mikrofons erreicht.

Abstract

The present paper deals with the integration of a capacitive silicon microphone chip into a chip scale package (CSP).

Microphones manufactured by using standard silicon technology replace more and more the electret condensor microphones. These microphones employ an electrically charged polymer layer acting as a phantom voltage source, which can loose charge due to increased temperature with a resulting loss of the electro-acoustical performance.

In this work, the mechanical impact of the package on the performance of the microphone is investigated. This is done analytically as well as by means of the finite element methode (FEM). A main focus of attention is given to the flip chip bonding of the microphone chip. The optimization is done with respect to the mechanical stability as well as to minimizing mechanical stress of the membrane on the microphone chip.

Furthermore, the geometry of the package is optimized concerning the acoustical performance. Therefore an analogue electro-acousto-mechanical network model is built. With its help the acoustical properties of different packaging concepts are calculated and compared with each other. For the first time a linearization of the frequency response is achieved by creating an acoustical channel through the package.

Danksagung

Herrn Prof. Dr. rer. nat Helmut Seidel vom Lehrstuhl für Mikromechanik, Mikrofluidik / Mikroaktorik der Universität des Saarlandes möchte ich herzlich für die fachliche Betreuung dieser Doktorarbeit und die stets freundliche Unterstützung danken.

Des Weiteren danke ich Herrn Prof. Dr. rer. nat. Gerhard Wachutka für die Übernahme des Koreferats dieser Doktorarbeit.

Ein besonders herzlicher Dank gilt Herrm Prof. Dr. rer. nat. Gregor Feiertag, der mir oft geduldig mit Rat und Tat während der Promotion zur Seite stand. Von ihm habe ich in diesen Jahren sehr viel gelernt, ebenso wie von den Herren Dr. Anton Leidl, Dr. Christian Siegel und Andreas Beer von der EPCOS AG, die mir stets sehr gute Ansprechpartner waren.

Außerdem möchte ich den Herren Matthias Jungkunz, Dr. Matthias Schmidt, Wolfgang Pahl, Rainer Kömmling, allesamt Mitarbeiter der EPCOS AG, ebenso wie meinem ehemaligen Kollegen Herrn Dr. Patrick Scheele, danken für die zahlreichen fruchtbaren Diskussionen und das tolle Arbeitsklima. Meinem ehemaligen Diplomanden Herrn Seifeddine Ben Aoun möchte ich an dieser Stelle ebenfalls Dank sagen.

Des Weiteren gilt mein Dank Herr Dr. Dudek und Frau Brämer vom Fraunhofer-Institut ENAS in Chemnitz für Ihre Unterstützung bei der Ansys-Modellierung.

Ganz besonders möchte ich mich an dieser Stelle bei meinen Eltern bedanken, die mir durch ihre großzügige und liebevolle Unterstützung in jeglicher Hinsicht mein Studium und als Folge dessen die Durchführung dieser Arbeit ermöglicht haben.

Last but not least einen herzlichen Dank an meine liebe Frau Lisi, für ihre moralische Unterstützung, insbesondere in den schwierigeren Zeiten der Dissertation.

Meiner Frau Lisi

Inhaltsverzeichnis

3.4.2

Abkürzungen und Symbole XI Einleituna 1 1 1 1.1 Wichtige Kenngrößen von Mikrofonen 3 1.2 1.3 Ziele und Lösungsvorschläge der Arbeit 4 Inhalt und Aufbau der Arbeit 1.4 5 2 Stand der Technik - Mikrofone 6 2.1Dynamisches Mikrofon 7 2.2 Kohlemikrofon 7 2.3 Piezo-Mikrofon 8 2.3.1Piezoresistives Mikrofon 8 Piezoelektrisches Mikrofon 2.3.2 8 2.4 Kondensatormikrofon 9 Elektret-Kondensatormikrofon 9 2.4.12.4.2Silizium-Kondensatormikrofon 10 2.5 Packaging von MEMS-Mikrofonen 12 Verfahren zur Herstellung 15 3 3.1 15 3.2 Aufbau des ASIC 16 3.3 Integrationsmöglichkeiten in ein Gehäuse 17 20 3.3.1 3.3.2 Chip Scale Microphone Package 22 Stacked Chip Scale Microphone Package 22 3.3.3 Auswahl der Materialien 3.4 26 3.4.126

Verbindung für Flip-Chip-Technologie

27

		3.4.3	Under-Bump Metallization	27
		3.4.4	Polyimid-Folie	28
		3.4.5	Polymer-Folie	28
	3.5	Prozess	sschritte	29
		3.5.1	Plasmareinigung	33
		3.5.2	Setzen der Gold-Bumps	34
		3.5.3	Laminieren der Polyimid-Folie	35
		3.5.4	Lasern der Polyimid-Folie	36
		3.5.5	Vereinzeln der Mikrofon-Chips	36
		3.5.6	Thermosonic-Bonden	36
		3.5.7	Flip-Chip-Bonden des ASICs	37
		3.5.8	Reflowlöten	38
		3.5.9	Laminieren der Polymer-Folie	38
		3.5.10	Lasern der Polymer-Folie	38
		3.5.11	Sputtern	39
			Sputtern einer Titan-Schicht	39
			Sputtern einer Kupfer-Schicht	39
		3.5.12	Galvanik	40
		3.5.13	Laserbeschriften	41
		3.5.14	Sägen	41
		3.5.15	Umkleben	41
		3.5.16	Messen	43
		3.5.17	Verpacken	43
	7		skait und Analyzamathadan	
4	ZUV			44
	4.1	Analyza		44
	4.2	Analys		49
		4.2.1	Ontische Lichtmitrechemie	49
		4.2.2		50
		4.2.5	Ditraschammikroskopie	51
		4.2.4	Computertomographie	52
		4.2.3	Computeriomographie	52
		4.2.0	Dhotoalaktrononspaktroskopia	55
		4.2.1	Machanisches Schleifen	55
		4.∠.ð		30

5	Eint Mer	iluss d nbran	es Gehäuses auf die mechanische Verspannung der	58
	5.1	Bestin	nmung der Membranspannung am ungehäusten Chip	58
	5.2	Bestin	nmung der Membranspannung am gehäusten Chip	62
	5.3	Vergle	bich der Membranspannungen	64
	5.4	Memb	branspannung unter äußeren Einflüssen	69
		5.4.1	Membranspannung unter Temperaturveränderung	70
		5.4.2	Membranspannung unter Reflow	71
6	Мос	dellieru	ing des akustischen Verhaltens	79
	6.1	Konze	entrierte Netzwerkelemente	80
		6.1.1	Akustische Elemente	81
			Akustische Widerstände	81
			Akustischer Widerstand in engen Röhren	81
			Akustischer Widerstand im Kondensatorspalt	82
			Akustische Federelemente	82
			Akustische Massenelemente	83
		6.1.2	Mechanische Elemente	84
			Mechanische Federelemente	85
			Mechanische Massenelemente	86
		6.1.3	Strahlungsimpedanz	86
	6.2	Model	llgenerierung	87
		6.2.1	Eingangsbereich	89
		6.2.2	Perforierte Gegenelektrode	89
		6.2.3	Kondensatorspalt	91
		6.2.4	Membranbereich	91
		6.2.5	Rückvolumen	91
		6.2.6	Berechnung der Frequenzantwort	91
		6.2.7	Das vereinfachte Ersatzschaltbild	91
	6.3	Analy	tische Rechnungen	94
	6.4	Kalibr	ierung des Modells	99
		6.4.1	Das Membranmodell	99
			Mechanische Nachgiebigkeit der Membran	99
			Mechanische Masse der Membran 1	00
		6.4.2	Die gedämpfte Membranschwingung 1	00

		6.4.3	Das Rückvolumenmodell	. 101
		6.4.4	Das Gesamtmodell	. 103
	6.5	Optim	ierung des Gehäuses	. 104
		6.5.1	Variation des Vorvolumen	. 106
		6.5.2	Variation der Länge des Schalllochs	. 108
		6.5.3	Variation des Radius des Schalllochs	. 108
		6.5.4	Variation der Anzahl der Schalllöcher	. 110
7	Mes	stechr	nik und Messergebnisse	113
	7.1	Messu	ngen im Freifeld	. 113
	7.2	Messu	ngen im Druckfeld	. 115
	7.3	Autom	natisierte Messung	. 116
	7.4	Spezif	ikation des Mikrofons	. 118
		7.4.1	Grundlegende elektroakustische Messwerte	. 118
		7.4.2	Windrauschen	. 125
		7.4.3	Untersuchung der Störanfälligkeit gegenüber hochfrequen-	-
			ter Einstrahlung	. 126
			Feldgebundene Störungen	. 127
			Leitungsgekoppelte Störungen	. 131
			Störung auf Versorgungsleitung	. 131
			Störung auf Signalleitung	. 134
8	Ver	gleich	des theoretischen Simulationsmodells mit den Mes	ss-
	wer	ten		136
9	Zus	amme	nfassung und Ausblick	141
	9.1	Zusam	menfassung	. 141
	9.2	Ausbli	ick	. 143
	Ab	bildung	gsverzeichnis	145
	Tab	oellenv	erzeichnis	151
	Lite	eraturv	erzeichnis	153

A	Fläche einer Kondensatorplatte, Fläche der Membran
AES	Augerelektronenspektroskopie
AlN	Aluminiumnitrid
ASIC	Application Specific Integrated Circuit
BIT	Ball Impact Test
C	Kondensatorkapazität
с	Schallgeschwindigkeit
C_0	Aktive Mikrofonkapazität
C_{A}	Akustische Kapazität
$C_{\rm ce}$	Mechanische Nachgiebigkeit der Gegenelektrode
$C_{ m gap}$	Akustische Nachgiebigkeit der Luft zwischen Membran und Gegenelektrode
$C_{ m in}$	Akustische Nachgiebigkeit der Luft im Öffnungsbereich des Mikrofons
$C_{ m m}$	Mechanische Nachgiebigkeit der Membran
$C_{ m mem}$	Akustische Nachgiebigkeit der Membran
$C_{ m Mikrofon}$	Mechanische Nachgiebigkeit des Mikrofons
$C_{ m V}$	Hohlraumnachgiebigkeit des Rückvolumens

CD	Contact Discharge
CDM	Charge Device Model
CMOS	Complementary Metal Oxide Semiconductor
CSMP	Chip Scale Microphone Package
CSP	Chip Scale Package
СТ	Corporate Technology
$d_{ m h}$	Abstand von Perforationslöchern in der Gegenelektrode
DBG	Dicing before Grinding
DIP	Dual in-line Package
DUT	Device Under Test
E	Elastizitätsmodul
$E_{\rm eff}$	Effektiver Elastizitätsmodul
EDX	Energiedispersive Röntgenspektroskopie
ESD	Electro Static Discharge
F	Kraft
$F_{\rm Elektrisch}$	Elektrische Kraft
$F_{\rm Gesamt}$	Gesamtkraft
$F_{\mathrm{Mechanisch}}$	Mechanische Kraft
FEM	Finite Elemente Methode
f	Frequenz
f_0	Eigenfrequenz
$f_{\rm mass}$	Massenfaktor

GSM	Global System for Mobile Communications
$H(\Omega)$	Übertragungsfunktion eines Tief- bzw. Hochpasses
HBM	Human Body Model
HF	Hochfrequenz
HTCC	High Temperature Cofired Ceramic
Ι	Elektrischer Strom
$k_{ m eff}$	Effektive Federkonstante
l	Länge
$l_{ m h}$	Länge einer Röhre
LGA	Land Grid Array
LTCC	Low Temperature Cofired Ceramic
M	Masse, Induktivität
$M_{\rm A}$	Akustische Masse
$M_{\rm ce}$	Dynamische Masse der Gegenelektrode
$M_{ m in}$	Akustische Masse der Luft im Öffnungsbereich des Mikro- fons
$M_{\rm m}$	Dynamische Masse der Membran
$M_{\rm mem}$	Akustische Masse der Membran
$M_{ m p}$	Akustische Masse der Luft in den Perforationslöchern der Gegenelektrode
$M_{\rm rad}$	Induktivität der Strahlungsimpedanz
MEMS	Micro Electronic Mechanical System

MM	Machine Model
N_2	Stickstoff
O_2	Sauerstoff
p	Schalldruck
$p_{ m m}$	An der Membran abfallender Schalldruck
PDA	Personal Digital Assistant
PES	Photoelektronenspektroskopie
PSRR	Power Supply Rejection Ratio
q	Volumenstrom, Fluss
R	Membranradius
$R_{\rm a}$	Akustischer Widerstand
$R_{ m gap}$	Akustischer Widerstand der Luft zwischen Membran und Ge- genelektrode
$R_{ m in}$	Akustischer Widerstand der Luft im Öffnungsbereich des Mi- krofons
$R_{ m p}$	Akustischer Widerstand der Luft in den Perforationslöchern der Gegenelektrode
$R_{\rm rad}$	Strahlungswiderstand
$R_{ m vent}$	Akustischer Widerstand der Luft in den Druckausgleichslöchern
$r_{ m h}$	Radius einer Röhre
RMS	Root Mean Square, quadratische Mittelung
RoHS	Restriction of Hazardous Substances

SAW	Surface Acoustic Wave
SMD	Surface Mount Device
SMS	Short Message Service
SMT	Surface Mount Technology
Sn60Pb40	Zinnblei
SnAgCu	Zinnsilberkupfer
SPL	Sound Pressure Level, Schalldruckpegel
t	Membrandicke
THD	Total Harmonic Distortion, Klirrfaktor
U	Spannung
U_0	Vorspannung an der Mikrofonkapazität
$U_{\rm P}$	Kollapsspannung
UBM	Under-Bump Metallization
UPS	Ultraviolett-Photoelektronenspektroskopie
UV	Ultraviolett
V	Volumen
v	Schallschnelle
$V_{ m Mikrofon}$	Übertragungsfunktion vom Schalldruck auf den Druck an der Membran
W	Arbeit
X_0	Effektiver Abstand der Perforationslöcher in der Gegenelek- trode

x_0	Ruhelage, Abstand der Membran von der Gegenelektrode
$x_{ m eff}$	Effektive mittlere Auslenkung der Membran
$x_{ m Kollaps}$	Ort des Kollapses
XPS	Röntgenphotoelektronenspektroskopie
Z_{a}	Akustische Impedanz
$Z_{ m rad}$	Strahlungsimpedanz
ϵ	Permittivität
ϵ_0	Permittivität der Luft
ΔC	Kapazitätsänderung
ΔU	Elektrische Sensitivität des Mikrofons
η	Viskosität
λ	Wellenlänge
ν	Poissonzahl, Querkontraktionszahl
ρ	Dichte
$ ho_{ m eff}$	Effektive Massendichte der Gegenelektrode
$ ho_{ m l}$	Dichte von Luft
$ ho_{ m per}$	Flächenanteil der Perforationslöcher in der Gegenelektrode
$ ho_{ m Si}$	Dichte von Silizium
σ	Mechanische Membranspannung
$\sigma_{ m c}$	Charakteristische Membranspannung
ω	Kreisfrequenz