Integration kapazitiver Silizium-Mikrofone in ein Chip Scale Package

Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwissenschaftlich-Technischen Fakultät II - Physik und Mechatronik der Universität des Saarlandes

von

Matthias Winter

Saarbrücken

2011

Tag des Kolloquiums: 15. März 2011

Dekan: Univ.-Prof. Dr. rer. nat. H. Seidel

Mitglieder des

Prüfungsausschusses: Univ.-Prof. Dr.-Ing. M. Nienhaus

Univ.-Prof. Dr. rer. nat. H. Seidel Univ.-Prof. Dr. rer. nat. G. Wachutka

Dr.-Ing. F. Felgner

Aktuelle Berichte aus der Mikrosystemtechnik Recent Developments in MEMS

Band 17

Matthias Winter

Integration kapazitiver Silizium-Mikrofone in ein Chip Scale Package

Shaker Verlag Aachen 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Saarbrücken, Univ., Diss., 2011

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-0114-3 ISSN 1862-5711

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der Integration eines kapazitiven Silizium-Mikrofon-Chips in ein Chip Scale Package (CSP).

Mikrofone, die mit Hilfe der Standard-Silizium-Technologie hergestellt werden, ersetzen immer mehr die Elektret-Kondensator-Mikrofone. Diese Mikrofone nutzen eine elektrisch geladene Polymerschicht als dauerhafte Phantomspannungsquelle, welche sich bei einem äußeren Temperaturanstieg entladen kann, was zu einem Verlust der elektroakustischen Eigenschaften des Mikrofons führt.

In dieser Arbeit werden die mechanischen Auswirkungen des Gehäuses auf die Eigenschaften des Mikrofons untersucht, sowohl analytisch als auch mit Hilfe der Finite Elemente Methode (FEM). Hauptaugenmerk wird auf die Flip-Chip-Montage des Mikrofon-Chips gerichtet. Die Optimierung betrifft insbesondere die mechanische Stabilität der Verbindung und deren Auswirkung auf die Verspannung der Membran des Mikrofon-Chips.

Des Weiteren wird die Geometrie des Gehäuses im Hinblick auf ihre akustischen Eigenschaften optimiert. Dazu wird ein analoges elektro-akustisch-mechanisches Netzwerkmodell erstellt. Mit diesem werden die akustischen Eigenschaften von verschiedenen Gehäusekonzepten berechnet und miteinander verglichen. Erstmalig wird durch die Schaffung eines akustischen Kanals durch das Gehäuse eine Linearisierung des Frequenzgangs eines Mikrofons erreicht.

Abstract

The present paper deals with the integration of a capacitive silicon microphone chip into a chip scale package (CSP).

Microphones manufactured by using standard silicon technology replace more and more the electret condensor microphones. These microphones employ an electrically charged polymer layer acting as a phantom voltage source, which can loose charge due to increased temperature with a resulting loss of the electro-acoustical performance.

In this work, the mechanical impact of the package on the performance of the microphone is investigated. This is done analytically as well as by means of the finite element methode (FEM). A main focus of attention is given to the flip chip bonding of the microphone chip. The optimization is done with respect to the mechanical stability as well as to minimizing mechanical stress of the membrane on the microphone chip.

Furthermore, the geometry of the package is optimized concerning the acoustical performance. Therefore an analogue electro-acousto-mechanical network model is built. With its help the acoustical properties of different packaging concepts are calculated and compared with each other. For the first time a linearization of the frequency response is achieved by creating an acoustical channel through the package.

Danksagung

Herrn Prof. Dr. rer. nat Helmut Seidel vom Lehrstuhl für Mikromechanik, Mikrofluidik / Mikroaktorik der Universität des Saarlandes möchte ich herzlich für die fachliche Betreuung dieser Doktorarbeit und die stets freundliche Unterstützung danken.

Des Weiteren danke ich Herrn Prof. Dr. rer. nat. Gerhard Wachutka für die Übernahme des Koreferats dieser Doktorarbeit.

Ein besonders herzlicher Dank gilt Herrm Prof. Dr. rer. nat. Gregor Feiertag, der mir oft geduldig mit Rat und Tat während der Promotion zur Seite stand. Von ihm habe ich in diesen Jahren sehr viel gelernt, ebenso wie von den Herren Dr. Anton Leidl, Dr. Christian Siegel und Andreas Beer von der EPCOS AG, die mir stets sehr gute Ansprechpartner waren.

Außerdem möchte ich den Herren Matthias Jungkunz, Dr. Matthias Schmidt, Wolfgang Pahl, Rainer Kömmling, allesamt Mitarbeiter der EPCOS AG, ebenso wie meinem ehemaligen Kollegen Herrn Dr. Patrick Scheele, danken für die zahlreichen fruchtbaren Diskussionen und das tolle Arbeitsklima. Meinem ehemaligen Diplomanden Herrn Seifeddine Ben Aoun möchte ich an dieser Stelle ebenfalls Dank sagen.

Des Weiteren gilt mein Dank Herr Dr. Dudek und Frau Brämer vom Fraunhofer-Institut ENAS in Chemnitz für Ihre Unterstützung bei der Ansys-Modellierung.

Ganz besonders möchte ich mich an dieser Stelle bei meinen Eltern bedanken, die mir durch ihre großzügige und liebevolle Unterstützung in jeglicher Hinsicht mein Studium und als Folge dessen die Durchführung dieser Arbeit ermöglicht haben.

Last but not least einen herzlichen Dank an meine liebe Frau Lisi, für ihre moralische Unterstützung, insbesondere in den schwierigeren Zeiten der Dissertation.

Meiner Frau Lisi

Inhaltsverzeichnis

	Ab	kürzungen und Symbole	ΧI			
1	Einleitung					
	1.1	Motivation	1			
	1.2	Wichtige Kenngrößen von Mikrofonen	3			
	1.3	Ziele und Lösungsvorschläge der Arbeit	4			
	1.4	Inhalt und Aufbau der Arbeit	5			
2	Sta	nd der Technik - Mikrofone	6			
	2.1	Dynamisches Mikrofon	7			
	2.2	Kohlemikrofon	7			
	2.3	Piezo-Mikrofon	8			
		2.3.1 Piezoresistives Mikrofon	8			
		2.3.2 Piezoelektrisches Mikrofon	8			
	2.4	Kondensatormikrofon	9			
		2.4.1 Elektret-Kondensatormikrofon	9			
		2.4.2 Silizium-Kondensatormikrofon	10			
	2.5	Packaging von MEMS-Mikrofonen	12			
3	Ver	fahren zur Herstellung	15			
	3.1	Aufbau des Mikrofon-Chips	15			
	3.2	Aufbau des ASIC	16			
	3.3	Integrationsmöglichkeiten in ein Gehäuse	17			
		3.3.1 SharpEar	20			
		3.3.2 Chip Scale Microphone Package	22			
		3.3.3 Stacked Chip Scale Microphone Package	22			
	3.4	Auswahl der Materialien	26			
		3.4.1 Substrat	26			
		3.4.2 Verbindung für Flip-Chip-Technologie	27			

Inhaltsverzeichnis

		3.4.3	Under-Bump Metallization	27
		3.4.4	Polyimid-Folie	28
		3.4.5	Polymer-Folie	28
	3.5	Prozess	sschritte	29
		3.5.1	Plasmareinigung	33
		3.5.2	Setzen der Gold-Bumps	34
		3.5.3	Laminieren der Polyimid-Folie	35
		3.5.4	Lasern der Polyimid-Folie	36
		3.5.5	Vereinzeln der Mikrofon-Chips	36
		3.5.6	Thermosonic-Bonden	36
		3.5.7	Flip-Chip-Bonden des ASICs	37
		3.5.8	Reflowlöten	38
		3.5.9	Laminieren der Polymer-Folie	38
		3.5.10	Lasern der Polymer-Folie	38
		3.5.11	Sputtern	39
			Sputtern einer Titan-Schicht	39
			Sputtern einer Kupfer-Schicht	39
		3.5.12	Galvanik	40
		3.5.13	Laserbeschriften	41
		3.5.14		41
		3.5.15	Umkleben	41
		3.5.16	Messen	43
		3.5.17	Verpacken	43
4	Zuv	erlässi	gkeit und Analysemethoden	44
	4.1		ässigkeitstests	44
	4.2		semethoden	49
		4.2.1	Elektroakustische Messung	49
		4.2.2	Optische Lichtmikroskopie	50
		4.2.3	Ultraschallmikroskopie	51
		4.2.4	Röntgen	52
		4.2.5	Computertomographie	52
		4.2.6	Energiedispersive Röntgenspektroskopie	55
		4.2.7	Photoelektronenspektroskopie	55
		4.2.8	Mechanisches Schleifen	56

5	Einfluss des Gehäuses auf die mechanische Verspannung der					
		nbran		58		
	5.1	Bestin	nmung der Membranspannung am ungehäusten Chip	58		
	5.2	Bestin	nmung der Membranspannung am gehäusten Chip	62		
	5.3	Vergle	eich der Membranspannungen	64		
	5.4	Memb	oranspannung unter äußeren Einflüssen	69		
		5.4.1	Membranspannung unter Temperaturveränderung	70		
		5.4.2	Membranspannung unter Reflow	71		
6	Mod	dellieru	ung des akustischen Verhaltens	79		
	6.1	Konze	entrierte Netzwerkelemente	80		
		6.1.1	Akustische Elemente	8		
			Akustische Widerstände	81		
			Akustischer Widerstand in engen Röhren	81		
			Akustischer Widerstand im Kondensatorspalt	82		
			Akustische Federelemente	82		
			Akustische Massenelemente	83		
		6.1.2	Mechanische Elemente	84		
			Mechanische Federelemente	85		
			Mechanische Massenelemente	86		
		6.1.3	Strahlungsimpedanz	86		
	6.2	Model	llgenerierung	87		
		6.2.1	Eingangsbereich	89		
		6.2.2	Perforierte Gegenelektrode	89		
		6.2.3	Kondensatorspalt	91		
		6.2.4	Membranbereich	91		
		6.2.5	Rückvolumen	91		
		6.2.6	Berechnung der Frequenzantwort	91		
		6.2.7	Das vereinfachte Ersatzschaltbild	91		
	6.3	Analy	tische Rechnungen	94		
	6.4	Kalibr	rierung des Modells	99		
		6.4.1	Das Membranmodell	99		
			Mechanische Nachgiebigkeit der Membran	99		
			Mechanische Masse der Membran	100		
		6.4.2	Die gedämpfte Membranschwingung	100		

Inhaltsverzeichnis

		6.4.3	Das Rückvolumenmodell	101
		6.4.4	Das Gesamtmodell	103
	6.5	Optim	iierung des Gehäuses	104
		6.5.1	Variation des Vorvolumen	106
		6.5.2	Variation der Länge des Schalllochs	108
		6.5.3	Variation des Radius des Schalllochs	108
		6.5.4	Variation der Anzahl der Schalllöcher	110
7	Mes	stechi	nik und Messergebnisse	113
	7.1	Messu	ingen im Freifeld	113
	7.2	Messu	ngen im Druckfeld	115
	7.3	Auton	natisierte Messung	116
	7.4	Spezif	ikation des Mikrofons	118
		7.4.1	Grundlegende elektroakustische Messwerte	118
		7.4.2	Windrauschen	125
		7.4.3	Untersuchung der Störanfälligkeit gegenüber hochfrequen-	
			ter Einstrahlung	126
			Feldgebundene Störungen	127
			Leitungsgekoppelte Störungen	131
			Störung auf Versorgungsleitung	131
			Störung auf Signalleitung	134
8	Ver	gleich	des theoretischen Simulationsmodells mit den Mess	3-
	wer	ten		136
9	Zus	amme	nfassung und Ausblick	141
	9.1	Zusan	nmenfassung	141
	9.2	Ausbl	ick	143
	Ab	bildun	gsverzeichnis	145
	Tab	ellenv	erzeichnis	151
	Lite	eraturv	verzeichnis	153

A Fläche einer Kondensatorplatte, Fläche der Membran

AES Augerelektronenspektroskopie

AlN Aluminiumnitrid

ASIC Application Specific Integrated Circuit

BIT Ball Impact Test

C Kondensatorkapazität

c Schallgeschwindigkeit

 C_0 Aktive Mikrofonkapazität

C_A Akustische Kapazität

 C_{ce} Mechanische Nachgiebigkeit der Gegenelektrode

 C_{gap} Akustische Nachgiebigkeit der Luft zwischen Membran und

Gegenelektrode

C_{in} Akustische Nachgiebigkeit der Luft im Öffnungsbereich des

Mikrofons

 $C_{
m m}$ Mechanische Nachgiebigkeit der Membran

 C_{mem} Akustische Nachgiebigkeit der Membran

 C_{Mikrofon} Mechanische Nachgiebigkeit des Mikrofons

 $C_{\rm V}$ Hohlraumnachgiebigkeit des Rückvolumens

CD Contact Discharge

CDM Charge Device Model

CMOS Complementary Metal Oxide Semiconductor

CSMP Chip Scale Microphone Package

CSP Chip Scale Package

CT Corporate Technology

d_h Abstand von Perforationslöchern in der Gegenelektrode

DBG Dicing before Grinding

DIP Dual in-line Package

DUT Device Under Test

E Elastizitätsmodul

 E_{eff} Effektiver Elastizitätsmodul

EDX Energiedispersive Röntgenspektroskopie

ESD Electro Static Discharge

F Kraft

 $F_{\text{Elektrisch}}$ Elektrische Kraft

 F_{Gesamt} Gesamtkraft

F_{Mechanisch} Mechanische Kraft

FEM Finite Elemente Methode

f Frequenz

 f_0 Eigenfrequenz

 $f_{\rm mass}$ Massenfaktor

GSM Global System for Mobile Communications

 $H(\Omega)$ Übertragungsfunktion eines Tief- bzw. Hochpasses

HBM Human Body Model

HF Hochfrequenz

HTCC High Temperature Cofired Ceramic

I Elektrischer Strom

 $k_{\rm eff}$ Effektive Federkonstante

l Länge

l_h Länge einer Röhre

LGA Land Grid Array

LTCC Low Temperature Cofired Ceramic

Masse, Induktivität

M_A Akustische Masse

 $M_{\rm ce}$ Dynamische Masse der Gegenelektrode

 $M_{\rm in}$ Akustische Masse der Luft im Öffnungsbereich des Mikro-

fons

 $M_{
m m}$ Dynamische Masse der Membran

 $M_{\rm mem}$ Akustische Masse der Membran

 $M_{\rm p}$ Akustische Masse der Luft in den Perforationslöchern der

Gegenelektrode

 $M_{\rm rad}$ Induktivität der Strahlungsimpedanz

MEMS Micro Electronic Mechanical System

MM Machine Model

N₂ Stickstoff

O₂ Sauerstoff

p Schalldruck

 $p_{\rm m}$ An der Membran abfallender Schalldruck

PDA Personal Digital Assistant

PES Photoelektronenspektroskopie

PSRR Power Supply Rejection Ratio

q Volumenstrom, Fluss

R. Membranradius

 $R_{\rm a}$ Akustischer Widerstand

 $R_{\rm gap}$ Akustischer Widerstand der Luft zwischen Membran und Ge-

genelektrode

 $R_{\rm in}$ Akustischer Widerstand der Luft im Öffnungsbereich des Mi-

krofons

 $R_{\rm p}$ Akustischer Widerstand der Luft in den Perforationslöchern

der Gegenelektrode

 $R_{\rm rad}$ Strahlungswiderstand

 R_{vent} Akustischer Widerstand der Luft in den Druckausgleichslö-

chern

r_b Radius einer Röhre

RMS Root Mean Square, quadratische Mittelung

RoHS Restriction of Hazardous Substances

SAW Surface Acoustic Wave

SMD Surface Mount Device

SMS Short Message Service

SMT Surface Mount Technology

Sn60Pb40 Zinnblei

SnAgCu Zinnsilberkupfer

SPL Sound Pressure Level, Schalldruckpegel

t Membrandicke

THD Total Harmonic Distortion, Klirrfaktor

U Spannung

 U_0 Vorspannung an der Mikrofonkapazität

 $U_{\rm P}$ Kollapsspannung

UBM Under-Bump Metallization

UPS Ultraviolett-Photoelektronenspektroskopie

UV Ultraviolett

V Volumen

v Schallschnelle

V_{Mikrofon} Übertragungsfunktion vom Schalldruck auf den Druck an der

Membran

W Arbeit

 X_0 Effektiver Abstand der Perforationslöcher in der Gegenelek-

trode

 x_0 Ruhelage, Abstand der Membran von der Gegenelektrode

 $x_{\rm eff}$ Effektive mittlere Auslenkung der Membran

 x_{Kollaps} Ort des Kollapses

XPS Röntgenphotoelektronenspektroskopie

 $Z_{\rm a}$ Akustische Impedanz

 $Z_{\rm rad}$ Strahlungsimpedanz

 ϵ Permittivität

 ϵ_0 Permittivität der Luft

 ΔC Kapazitätsänderung

 ΔU Elektrische Sensitivität des Mikrofons

 η Viskosität

 λ Wellenlänge

ν Poissonzahl, Querkontraktionszahl

 ρ Dichte

 $ho_{ ext{eff}}$ Effektive Massendichte der Gegenelektrode

 ρ_1 Dichte von Luft

 $\rho_{\rm per}$ Flächenanteil der Perforationslöcher in der Gegenelektrode

 ho_{Si} Dichte von Silizium

 σ Mechanische Membranspannung

 $\sigma_{\rm c}$ Charakteristische Membranspannung

 ω Kreisfrequenz