
Three Generalisations of Lattice

Distributivity: An FCA Perspective

Dissertation

zur Erlangung des akademischen Grades
Doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt

der Fakultät Mathematik und Naturwissenschaften
der Technischen Universität Dresden

von

Dipl.-Math. Heiko Reppe
geboren am 24. Dezember 1976 in Räckelwitz

Gutachter: Prof. Dr. Bernhard Ganter,

Technische Universität Dresden

Prof. Dr. Marcus Greferath,

University College Dublin

Eingereicht am: 12. Oktober 2010

Tag der Disputation: 27. Januar 2011





Shaker  Verlag
Aachen  2011

Berichte aus der Mathematik

Heiko Reppe

Three Generalisations of Lattice Distributivity:
An FCA Perspective



Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet
at http://dnb.d-nb.de.

Zugl.: Dresden, Techn. Univ., Diss., 2011

Copyright  Shaker  Verlag  2011
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-0037-5
ISSN 0945-0882

Shaker  Verlag  GmbH  •  P.O. BOX 101818  •  D-52018  Aachen
Phone:  0049/2407/9596-0   •   Telefax:  0049/2407/9596-9
Internet: www.shaker.de   •   e-mail: info@shaker.de



Preface

In the present study we investigate concept lattices and their corrsponding
formal contexts K = (G, M, I) that are usually given by a cross-table and
from wich we infer a set of implications. The triple K consists of two sets,
namely the set of objects G, which refers to the rows of the table, and the
set of attributes M , which refers to the names of the columns of the cross-
table. The triple is complete with an incidence relation I that states that
an object g possesses an attribute m if and only if in row g there is a cross
in the column m. The concept lattice B(K) arises from K = (G, M, I) by
collecting all maximal rectangles, which are full of crosses (regardless of
succession of rows and columns). Such a maximal rectangle is characterised
by the collection of its objects A ⊆ G and its attributes B ⊆ M . The
pair (A,B) is called formal concept. All formal concepts can naturally be
ordered and thereby form a complete lattice.

Moreover, such a concept lattice B(K) is compounded by two closure
systems, namely Ext(K) ⊆ P(G), the system of extents, and Int(K) ⊆
P(M), the system of intents. When ordered by inclusion, these two form
dually isomorphic lattices. Instead of studying the closure systems, we
investigate their closure operators, which are generated from some set of
implications L. Of particular interest for applications are small sets of
implications that characterise the closure operator. Likewise, implications
are of interest, the premises of which are small in size. To obtain the closure
of an attribute set, the implications have to be applied iteratively. Thus, it
is preferable to deal with sets of implications that do not need to be applied
frequently.

Concept lattices are complete lattices. Moreover, every complete lattice
is isomorphic to a concept lattice. A complete lattice can be regarded as
an algebraic structure L = (L,∨,∧) of the type (2, 2) as well as a relational
structure (L,≤).

The three subjects (cross-table, concept lattice, set of implications) find
their opponent in data management. The cross-table is an abstraction of a
data-base. The concept lattice is a representation of the information within
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the data-base. It organises objects in sets with common attribute sets and
allows navigation within the data. Finally, the implications are inferences
and dependencies of the data-base.

The theoretical background for our analysis is founded in the algebraic
nature of a concept lattice B(K). We use contributions from two mathe-
matical fields, namely order theory and universal algebra. A lattice and a
concept lattice in particular possesses an order relation induced by the in-
clusion of extents (and dually the superset relation of intents). At the same
time it allows to determine the greatest lower bound and the least upper
bound for every set of concepts. Thus, a concept lattice is an algebraic
structure with two binary operations (which, in addition to it, extends to
operations of arbitrary arity). It is the field of universal algebra that inves-
tigates those structures in general.

Application Data-Base Data-Representation Data-Analysis

Abstraction Pattern Structure Inference

Concept Lattice Closure System
3 Subjects Formal Closure

of Study Context Complete Lattice Operator

Theoretic Order
(L,≤) ∼= (L,∨,∧)

Universal
Background Theory

Lattice Theory
Algebra

Since each of the three fully characterises the other two, the question
arises what influence has the algebraic structure of B(K) on the formal
context and the set of implications. Exemplary, we study three degrees of
lattice distributivity that are of interest to other authors as well. These
lattice properties are n-distributivity, introduced by Huhn in [H72], n-mod-
ularity studied by Grätzer and Wehrung in [GW99a, GW99b] and k-join-
semidistributivity, proposed by Geyer [G92].

This study is divided into five chapters. Chapter one focuses on n-dis-
tributivity. Let n be a positive integer. A lattice L is called n-distributive
if for all x, y0, . . . , yn ∈ L:

x ∨ (

n̂

i=0

yi) =

n̂

j=0

(x ∨
n̂

i=0
i�=j

yi).
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We achieve by Theorem 1.39 characterisations of this lattice property in
the formal context as well as in the closure system of intents. Moreover, we
obtain a characterisation of n-distributivity by the help of substructures of
the lattice, see Theorem 1.23. We investigate how close the characterisation
of n-distributivity by mean of implications is related to the concept of the
character of a closure system, cf. Section 1.2.1.

The second chapter is concerned with the n-modularity. Here, a partial
success in the direction of further characterisations was also achieved. Let
L be a lattice, x, y, z ∈ L, and n ∈ N. We define the following polynomials:

p0 := x, q0 := y, r0 := z,

p1 := x ∨ (y ∧ z), q1 := y ∨ (x ∧ z), r1 := z ∨ (x ∧ y),

...
...

...

pn+1 := pn ∨ (qn ∧ rn), qn+1 := qn ∨ (pn ∧ rn), rn+1 := rn ∨ (pn ∧ qn).

Additionally, if n > 0, then the lattice identity μn is defined as pn = pn+1.
A lattice satisfying μn is called n-modular.

Concerning the determination of the least integer n ∈ N, for which a lat-
tice is n-modular, three-element antichains of the lattice are important that
do not form a balanced triple. On the other hand, the set of balanced triples
of a finite lattice forms a lattice. For that lattice, we determined the reduced
formal context, cf. Proposition 2.13. The comprehension of that helped to
perceive the difference between the tensor product of concept lattices and
the lattice of bonds for their formal contexts. Consequently, we define a
tensor product for concept lattices in a way that the result is isomorphic to
the lattice of bonds for their formal contexts, cf. Theorem 2.23.

Moreover, the second chapter considers the question of the free lattice,
generated by three elements, which is 2-distributive and dually 2-distribu-
tive. It turns out that this lattice is infinite. For the free lattice, generated
by three elements, which is 2-distributive and dually 2-distributive as well as
2-modular and dually 2-modular, we obtain a list of subdirectly irreducible
lattices which must be contained as sublattice. It is not known yet whether
this list is complete. However, the subdirect product of those lattices turns
out to be very large.

Let n be a positive integer. A complete lattice L is called n-join-semi-
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distributive if it holds for all x, y0, y1, . . . , yn ∈ L:

x ∨ y0 = · · · = x ∨ yn implies x ∨ y0 =
n
_

i,j=0
i�=j

x ∨ (yi ∧ yj).

These lattice properties generalise join-semidistributivity (n = 1). This
property is related to a lattice construction, called local doubling. We
characterise the subsets of a lattice, which can be doubled such that the
result is a lattice again, cf. Theorems 3.31 and 3.33. This generalises results
for order-convex subsets of lattices. We show that the collection of all sets,
which can be doubled, also forms a complete lattice.

Additionally, the third chapter of the thesis provides three families of lat-
tices which demonstrate that the three properties n-distributivity, n-mod-
ularity and n-join-semidistributivity are independent to a considerable de-
gree. Furthermore, we provide a formal context for one particular join-
semidistributive lattice, namely the lattice of all suborder relations of a
finite linear order, cf. Theorem 3.37, and, likewise, for the lattice of all
quasiorders of a finite set. Both constructions are recursive.

The fourth chapter deals with the lattice of all closure systems on a fi-
nite set. Here, too, we provide a formal context of this lattice by using
a recursive construction, cf. Proposition 4.3. In addition, we provide the
reduced formal context for the lattice of all closure systems of a complete
lattice, the reduced context for the lattice of all complete sublattices of a
distributive lattice, and we show that the latter construction is generalis-
able, cf. Section 4.3. In the sequence of formal contexts we also obtain the
reduced formal context of lattice refinements of a closure system.

Finally, we demonstrate an attribute exploration algorithm, which is
based on implications with proper premise, cf. Section 4.5. The advantages
of this may be summarised as follows: When dealing with large attribute
sets, in the most cases, a user is not interested in all dependencies between
attributes, but only in those with a small size of a premise, since they seem
more easy to manage. In contrast to the usual method—using the stem
base—the algorithm used here accomplishes that strategy. However, it has
not been implemented yet, but is here provided in a pseudo-code.

In an appendix, cf. Appendix A, we turn to left-clearings and present
them in a new light. A left-clearing of an ordered set is a subset of the order
relation equipped with an additional property. The set of left-clearings
of an ordered set of finite length ordered by inclusion forms a complete
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lattice. Lattices that arise in this way generalise Tamari-lattices and can
be explained purely by order theory.

The present study is based on three publications for conferences in the
neighbourhood of the Formal Concept Analysis community, including the
ICFCA and the ICCS-series. The main results of the publications [GR07,
R07, R08] are presented here in a different light.
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