Doppler-Effekte in UWB-basierten Rotortelemetrie-Systemen

Von der Fakultät für Elektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte

Dissertation

von Dipl.-Ing. Amina Ayadi-Mießen geboren am 27. April 1979 in Sfax - Tunesien

2011

Referent:Prof. Dr.-Ing. H.-P. KuchenbeckerKorreferent:Prof. Dr.-Ing. H. GarbeVorsitzender:Prof. Dr.-Ing. T. KaiserTag der Promotion:18. Januar 2011

Hannoversche Beiträge zur Nachrichtentechnik

Band 1.12

Amina Ayadi-Mießen

Doppler-Effekte in UWB-basierten Rotortelemetrie-Systemen

Shaker Verlag Aachen 2011

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hannover, Leibniz Univ., Diss., 2011

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-9946-0 ISSN 1616-5489

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Diese Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Institut für Kommunikationstechnik der Gottfried Wilhelm Leibniz Universität Hannover.

Mein besonderer Dank gilt meinem Doktorvater Herrn Professor Dr.-Ing. H.-P. Kuchenbecker für die frühe Anregung zu dieser Arbeit und die wertvolle Unterstützung bei deren Anfertigung.

Herzlich bedanke ich mich bei Herrn Professor Dr.-Ing. H. Garbe vom Institut für Grundlagen der Elektrotechnik und Messtechnik für die Übernahme des Korreferats und Professor Dr.-Ing. T. Kaiser für die Übernahme des Vorsitzes der Promotionsprüfung.

Ich bedanke mich ebenfalls bei Professor Dr.-Ing. K. Jobmann für die moralische Unterstützung und das mir entgegen gebrachte Vertrauen.

Ein besonderer Dank gilt der Christiane Nüsslein-Volhard-Stiftung für die ausgezeichnete Unterstützung.

Besonders danke ich der Firma Telemetrie Elektronik GmbH für die Anfertigung des Antennensystems.

Ein besonderer Dank gilt Herrn Dr.-Ing. Claus Kupferschmidt für die langjährige Zusammenarbeit und die kritische Durchsicht der Arbeit.

Danken möchte ich ganz herzlich Frau M.Sc. Sanam Moghaddamnia, Herrn Dipl.-Ing. Ingolf Wassermannm, Herrn M.Sc. Emil Dimitrov, Herrn Dipl.-Ing. Waldemar Gerok, Herrn Dr.-Ing. Mohamed El-Hadidy, Frau M.Sc. Chung Le für zahlreiche wertvolle Hinweise und Diskussionen, die zum Gelingen dieser Arbeit beigetragen haben.

Ebenso danke ich meinen Institutskollegen für das hervorragende Arbeitsklima und die Hilfsbereitschaft.

Mein spezieller Dank gilt Gisela und Heinz für die Korrektur des Manuskripts.

Weiterhin danke ich meinen Eltern für die dauerhafte Unterstützung. Zu guter Letzt bedanke ich mich bei meinem Ehemann Daniel Mießen für die aufgebrachte Geduld bei der Anfertigung dieser Arbeit.

Barsinghausen, im Februar 2011

Amina Ayadi-Mießen

Kurzfassung

Telemetrie steht für Fern-Messtechnik und bezeichnet die Übertragung von Messwerten physikalischer Parameter eines am Messort befindlichen Sensors zu einer räumlich getrennten Einheit. Eine spezielle Variante der Telemetrie, die oft in der Industrie Einsatz findet, ist die Rotortelemetrie. Dabei sind die Sensoren und Sender an einem rotierenden Objekt wie drehende Achsen, Wellen, Räder, Flügel oder Propeller befestigt. Das Sendesignal wird über eine spezielle am Umfang des Rotors befestigte Antenne abgestrahlt. Die Sendeantenne dreht sich in der Regel mit dem Rotor. Die statische Empfangsantenne befindet sich in einem Abstand von wenigen Millimetern oder Zentimetern von dem Rotor entfernt, so dass meist die Übertragung zwischen den Antennen auf einer Nahfeld-Kopplung beruht.

Die Datenübertragung von dem rotierenden Sender an den statischen Empfänger sowie die Energieversorgung des Rotors erfolgen zunehmend drahtlos. Auf Grund des knappen Einbauraums und der beschränkten Energie am Rotor stellt die Datenübertragung in die Rotortelemetrie eine Herausforderung dar. Darüber hinaus steigt die Anforderung an Übertragungssysteme der Rotortelemetrie hinsichtlich höherer Flexibilität der Systemkonfiguration, wachsender Anzahl gleichzeitig übertragbarer Messsignale und hoher Datenraten. Die IR-UWB-Technik (IR-UWB, Impuls-Radio Ultra-Wideband) wurde in dieser Arbeit als geeignetes Übertragungsverfahren für zukünftige Rotortelemetrie-Systeme auf Grund des geringen Energie-Verbrauchs und der einfachen Struktur auf der Senderseite sowie der erreichbaren hohen Datenraten über kurze Entfernungen angesehen.

In der Literatur findet die UWB-Technik in statischen oder langsam veränderlichen Umgebungen Einsatz. Die neue Anwendung der Rotortelemetrie unterscheidet sich von den bisherigen Szenarien in der rotatorischen Bewegung und hohen Drehgeschwindigkeit. Der damit verbundene Doppler-Effekt ist in der vorliegenden Arbeit untersucht worden. Hierfür ist eine Messung des unbekannten Rotortelemetrie-Kanals im UWB-Bereich notwendig.

In Schmalband-Systemen wird die Dopplerverschiebung als gleichmäßig für alle Frequenzanteile des Signals angenommen. Mit Hilfe der Messdaten konnte gezeigt werden, dass diese Annahme für die IR-UWB-Signale auf Grund der hohen Bandbreite nicht gültig ist. Sinus-Signale sind hierfür mit Frequenzen von 1 MHz bis 8 GHz auf Basis einer Simulation über den gemessenen Rotortelemetrie-Kanal übertragen worden. Anhand der empfangenen Spektren konnte die Frequenzabhängigkeit der Dopplerverschiebung gezeigt werden. Darüber hinaus konnte anhand dieser Spektren die relative Permittivität des Dielektrikums der Empfangsantenne in Abhängigkeit von der Frequenz ermittelt werden, welche für die theoretische Berechnung der Dopplerverschiebung erforderlich ist.

Die Aktualisierung der Kanalschätzung außerhalb der Kohärenzzeit des Kanals führt zu einer starken Verschlechterung der Systemleistungsfähigkeit. Eine Dopplerkompensation ist dann erforderlich. Die Grenzen zum Bedarf einer Dopplerkompensation bei IR-Rotortelemetrie-Systemen wurden in Abhängigkeit von der Drehgeschwindigkeit und der zugelassenen Redundanz untersucht.

Es wurde mathematisch bewiesen, dass die frequenzabhängige Dopplerverschiebung einer Zeitskalierung des IR-Empfangssignals entspricht. Auf der Basis dieser Erkenntnisse wurden drei Verfahren zur Dopplerschätzung präsentiert. Das neu vorgestellte KKF-Verfahren liefert den besten Kompromiss aus Robustheit, Rechenaufwand und Redundanz.

Ein Verfahren zur Kompensation der frequenzabhängigen Dopplerverschiebung – basierend auf der Abtastratenänderung im Empfangssignal – wurde vorgeschlagen und überprüft. Das Verfahren setzt Interpolationsfilter als Lösung voraus. Implementierungsmöglichkeiten dieser Filter wurden vorgestellt.

Schlagwörter

Breitband-Systeme, UWB, Doppler-Effekt, Doppler-Kompensation, Rotortelemetrie, UWB-Kanalmessung

Abstract

Telemetry is a remote measurement technology over distance. It allows reporting measurement information related to physical parameters from sensors located in the measuring point to a remote unit. Rotor-telemetry is a special type of telemetry, which is widespread in industrial environments. In such systems, sensors and transmitter are predominantly mounted on rotating objects such as shafts, wheels, blades or aircraft propellers. Measurement data are transmitted over antennas, which are mounted on the rotor. The static receive antennas are located in typical scenarios only a few centimeters or millimeters away from the transmit antenna, so that data are transmitted over near-field coupling of the antennas.

Data transmission from the rotating transmitter to the static receiver as well as the energy supply of the rotor are increasingly implemented wireless. Since space and energy requirements on the rotor are very limited, the transmitter electronic should be small, simple and must have low energy consumption. Moreover, requirements for rotortelemetry systems are growing to be more flexible and support high data rates and bigger number of simultaneously transmitted measurement signals. Low transmission power, simple transmitter structure and capability to support high data rates over short ranges are advanced features of Impulse Radio (IR) Ultra Wideband (UWB). IR-UWB radio technology seems to be a suitable candidate for the rotor-telemetry systems.

Most of the typical applications based on the UWB-technology are used in environments, where the channel is time invariant or very slow variant. The new scenario of the rotortelemetry differs from these existing typical applications due to the rotational movement with high velocity. A new problem appears with this scenario: since the rotor moves fast, the impact of the Doppler Effect rises significantly, which leads to the need to better analyse it. For this purpose the measurement of the rotor-telemetry channel in the UWBfrequency bandwidth is required.

In narrowband systems, the Doppler shift can be assumed to be equal for all frequencies over the bandwidth. Using measurement data, it could be illustrated, that this assumption is no longer valid for IR-UWB signals due to the huge bandwidth. Based on simulations, sinus signals for different frequencies ranging from 1 MHz to 8 GHz were transmitted through the measured rotor-telemetry channel. The received spectrums show the frequency dependence of the Doppler shift. The relative permittivity of the receive antenna over the frequency could be determined, to theoretically calculate the Doppler shift.

If the channel estimation is updated beyond the coherence time of the channel, the system performance will degrade extremely. In this case, the compensation of the Doppler shift is necessary. A boundary for the need of a Doppler compensation in IR-rotor-telemetry systems was calculated in dependence of the rotation velocity and the allowed redundancy.

It was proven, that the frequency dependent Doppler shift corresponds to a time scaling of the receiving signal. Based on this knowledge, methods for Doppler estimation were presented. The new introduced method yields the best compromise between robustness, computing time and redundancy.

A method for compensation of the frequency dependent Doppler shift based on sampling rate conversion was proposed and investigated. This method presents interpolation filters as solutions for this problem. Possible implementations of the filters were introduced.

Key words

Wideband systems, UWB, Doppler Effect, Doppler compensation, rotor-telemetry, UWB channel measurement

Inhaltsverzeichnis

Ve	erzeio	chnis d	ler Abkürzungen		XI
Ve	Verzeichnis der mathematischen Symbole XII			III	
Ei	nleit	ung			1
1	Ein	führun	g in die UWB-basierte Rotortelemetrie		5
	1.1	Einfüh	nrung in die funkgestützte Rotortelemetrie		6
		1.1.1	Aufbau eines Rotortelemetrie-Systems		7
		1.1.2	Übersicht über bestehende Rotortelemetrie-Systeme \hdots		10
		1.1.3	Anforderungen an ein Telemetrie-System für die Rotortelemetrie .		12
	1.2	Grund	llagen der UWB-Technik		13
		1.2.1	IR-UWB		14
		1.2.2	Multiband-UWB		20
	1.3	Einsat	z der UWB-Technik in der Rotortelemetrie		22
2	Mes	ssung o	les Rotortelemetrie-UWB-Kanals		25
	2.1	Einfüh	rrung in die UWB-Übertragungskanäle		26
		2.1.1	Überblick über UWB-Kanalmessungen		26
		2.1.2	Eigenschaften der UWB-Kanäle		27
	2.2	Beschr	eibung des Antennensystems		28
	2.3	Statio	näre Messungen im Frequenzbereich		30
		2.3.1	Beschreibung des Messverfahrens		31
		2.3.2	Messergebnisse		33
	2.4	Messu	ngen im Zeitbereich		38
		2.4.1	Beschreibung des Messverfahrens		38
		2.4.2	Simulationsergebnisse		41
		2.4.3	Messergebnisse		41

3	Aus	swirku	ng des Doppler-Effektes auf UWB-Signale	45
	3.1	Defini	tion des Doppler-Effektes	45
		3.1.1	Physikalische Beschreibung des Doppler-Effektes	46
		3.1.2	Doppler-Effekt in Schmalband-Mobilfunkkanälen	49
	3.2	Unters	suchung des Doppler-Effektes am UWB-Rotortelemetrie-Kanal	50
		3.2.1	Auswirkung des UWB-Rotortelemetrie-Kanals auf ein Sinus-Signal .	51
		3.2.2	Streufunktion	54
		3.2.3	Kreuz-Ambiguity-Funktion	56
	3.3	Auswi	rkung des Doppler-Effektes auf MB-OFDM-Signale	62
	3.4	Auswi	rkung des Doppler-Effektes auf IR-Signale	64
		3.4.1	Leistungsfähigkeit des IR-Rotortelemetrie-Systems unter Einwirkung des Doppler-Effektes	64
		3.4.2	Grenzen zum Bedarf einer Dopplerkompensation bei IR- Rotortelemetrie-Systemen	65
		3.4.3	Schmalband- oder Breitband-Annahme der Dopplerverschiebung bei IR-Rotortelemetrie-Systemen	68
		3.4.4	Theoretische Auswirkung der Dopplerverschiebung auf IR-Signale	68
4	Me	thoden	zur Schätzung der Dopplerverschiebung	70
	4.1	Verfah	ren basierend auf der Änderung der Länge des IR-Symbols	70
		4.1.1	Mathematische Beschreibung des LIRS-Verfahrens	71
		4.1.2	Analyse der erzielten Schätzung	73
	4.2	Verfah	ren basierend auf der Kreuz-Ambiguity-Funktion	75
		4.2.1	Mathematische Beschreibung des CAMBF-Verfahrens	76
		4.2.2	Analyse der erzielten Schätzung	77
	4.3	Verfah	ren basierend auf der Kreuzkorrelationsfunktion	79
		4.3.1	Mathematische Beschreibung des KKF-Verfahrens	79
		4.3.2	Analyse der erzielten Schätzung	81
5	Me	thoden	zur Kompensation der Dopplerverschiebung	85
	5.1	Auswi	rkung der Zeitskalierung auf das zeitdiskrete Signal	86
	5.2	Prinzi	p eines Interpolationsfilters	88
	5.3	Imple	nentierung eines Interpolationsfilters	90
		5.3.1	Realisierung eines Interpolationsfilters	90
		5.3.2	Berechnung der Impulsantwort eines Interpolationsfilters $\ .\ .\ .$.	91
	5.4	Erzielt	e Ergebnisse	94

Zusammenfassung	
A Dopplerverschiebung in unterschiedlichen Szenarien	101
B Zur Messung der relativen Permittivität eines Materials	103
C Polarisationsmechanismen der Materialien	105
D Zusammenhang zwischen Streufunktion und Ambiguity-Funktion	107
Literaturverzeichnis	

Verzeichnis der Abkürzungen

Abkürzung Bedeutung

ADSL	Asymmetric Digital Subscriber Line
ADW	Analog-Digital-Wandler
AKF	Autokorrelationsfunktion
AM	Amplitudenmodulation
BNC	Bayonet Nut Connector
CAMBF	Cross-Ambiguity-Function
CAN	Controller Area Network
CM	Channel Model
DECT	Digital Enhanced Cordless Telecommunications
DAB	Digital Audio Broadcasting
DMS	Dehnungs-Mess-Streifen
DMSK	Differential Minimum Shift Keying
DSO	Digital Sampling Oscilloscope
DS-SS	Direct-Sequence Spread Spectrum
DVB-T	Digital Video Broadcasting Terrestrial
DVK	Development Kit
FCC	Federal Communications Commission
FFT	Fast Fourier Transformation
FM	Frequenzmodulation
FSK	Frequency Shift Keying
ECMA	European Computer Manufacturers Association
HF	Hochfrequenz
ICP	Integrated Circuit Piezoelectric
IF	Interpolationsfilter
IDFT	Inverse Discrete Fourier Transformation
IEEE	Institute of Electrical and Electronics Engineers
IR	Impuls-Radio
ISM	Industrial, Scientific and Medical
KKF	Kreuzkorrelationsfunktion
KS	Kanalschätzung
LIRS	Länge des IR-Symbols
LNA	Low Noise Amplifier
MB	Multiband
MB-OFDM	Multiband Orthogonal Frequency Division Multiplexing
MSK	Minimum Shift Keying
NWA	Netzwerkanalysator
OFDM	Orthogonal Frequency Division Multiplexing
PAN	Personal Area Network

Abkürzung Bedeutung

PAM	Pulse Amplitude Modulation
PCM	Pulse Code Modulation
PLL	Phase-Locked Loop
PM	Phasenmodulation
PPM	Pulse Position Modulation
PN	Pseudo Noise
PT100	Bezeichnung für einen Temperaturfühler aus Platin
RFID	Radio-Frequency Identification
QPSK	Quadrature Phase Shift Keying
SAR	Synthetic Aperture Radar
SNR	Signal to Noise Ratio
SMA	Sub-Miniature-A
SV	Saleh-Valenzuela-Kanalmodell
TH	Time-Hopping
TFC	Time-Frequency Code
UHF	Ultra-High-Frequency
US	Uncorrelated Scattering
USB	Universal Serial Bus
UWB	Ultra-Wideband
WLAN	Wireless Local Area Network
WPAN	Wireless Personal Area Network
WSS	Wide Sense Stationary
WSSUS	Wide Sense Stationary Uncorrelated Scattering
ZF	Zero-Forcing

XII

Verzeichnis der mathematischen Symbole

α_0	Dämpfungskonstante des Empfangssignals (durch frequenzflachen Kanal)
$\tilde{\alpha}_l$	geschätzte Dämpfungskonstante des l -ten Pfades des Kanals
α_l	Dämpfungskonstante des <i>l</i> -ten Pfades des Kanals
$\beta_{l,k}$	Dämpfung des l -ten Pfades des k -ten Clusters
δ	PPM-Modulationskonstante
$\delta(t)$	Diracstoß
δ_f	Subträgerabstand in einem OFDM-Symbol
$\dot{\Delta}_l, \Delta_n$	Abweichung zwischen den Abtastwerten
Δs	Ausbreitungsweg der Welle auf der Empfangsantenne
$\Delta s_{\rm max}$	maximaler Ausbreitungsweg der Welle auf der Empfangsantenne
Δf	Frequenzauflösung der Kanalmessung
ΔT	Abweichung in der Symbol- bzw. Blockdauer auf Grund der
	Dopplerverschiebung
$\Delta \varphi$	Winkelintervall in dem eine Kanal-Übertragungsfunktion gemessen wird
$\Delta \varphi_{\rm B}$	Winkelintervall zwischen zwei hintereinander folgenden Kanalschätzungen
$\Delta \varphi_{\rm K}$	Winkelintervall entsprechend der Kohärenzzeit des Kanals $T_{\rm K}$
ε	Permittivität
$\varepsilon_{\rm r}$	relative Permittivität
$\varepsilon_{\rm rK}$	relative Permittivität des Kabeldielektrikums
ε_0	elektrische Feldkonstante
ϵ_l, ϵ_n	ganzzahliger Anteil der Abtastabweichung
γ_c	Rate des Abstiegs der mittleren Leistung der Echos innerhalb eines Clusters
Γ_c	Rate des Abstiegs der mittleren Leistung der ersten Echos
	aufeinander folgenden Cluster
η	Skalierungsfaktor (auf Grund der Dopplerverschiebung)
$\tilde{\eta}$	geschätzter Skalierungsfaktor
λ_0	Wellenlänge
λ'_0	durch Bewegung vom Sender oder Empfänger entstehende Wellenlänge
λ_{Dmax}	maximale Wellenlänge im Dielektrikum
λ_{Lmax}	maximale Wellenlänge in der Luft
$\lambda_{ m c}$	Rate der exponentiell-verteilten Ankunftszeiten der ersten Echos
	aufeinander folgenden Cluster
λ_j	Eingangswerte der Lagrange-Interpolation
$\Lambda_{\rm c}$	Rate der Poisson-verteilten Ankunftszeiten der Echos innerhalb eines Clusters
μ	Permeabilität
μ_0	magnetische Feldkonstante
$\mu_{ m r}$	relative Permeabilität
μ_l, μ_n	gebrochener Anteil der Abtastabweichung

XIV VERZEICHNIS DER ABKÜRZUNGEN UND MATHEMATISCHEN SYMBOLE

ω	Kreisfrequenz
ω _m	diskrete Winkelposition des Rotors für die Kanalmessung
φ.	diskrete Winkelposition des Rotors für die Dopplerschätzung
$\varphi(t)$	zeitkontinuierliche Winkelposition des Rotors
$\varphi_{ss}(\tau)$	Autokorrelation des Sendesignals
$\varphi_{or}(\tau)$	Kreuzkorrelation des Sendesignals mit dem Empfangssignal
$(\mathcal{O}_{\text{max}}^{(k)})$ (τ)	Kreuzkorrelation des Empfangssignals mit der Maske der Dopplerschätzung
$\varphi_{rs_{\text{mask,d}}}(\tau)$	Kreuzkorrelation des Sendesignals mit dem Rauschen
$\varphi_{sn}(\cdot)$	Autokorrelation des Pfadgewichts α_n
$\phi_{\alpha\alpha}(\mathbf{i}\omega)$	spektrale Leistungsdichte des Sendesignals
$\phi_{ss}(j\omega)$ $\phi_{ss}(i\omega)$	Fourier-Transformierte der Kreuzkorrelation des Sendesignals mit dem
$\varphi_{ST}(\mathbf{j}\mathbf{\omega})$	Empfangssignal
$\phi_{an}(\mathbf{i}\omega)$	Fourier-Transformierte der Kreuzkorrelation des Sendesignals mit dem
$\varphi sn(j\omega)$	Rauschen
$\phi_{\rm norm}(f)$	normierte spektrale Energiedichte eines Signals
$\phi_{\alpha} \alpha (i\nu')$	spektrale Leistungsdichte des Pfadgewichts α_n
θ	Einfallswinkel
θ_{\min}	minimaler Einfallswinkel
$\theta_{\rm max}$	maximaler Einfallswinkel
σ	Standardabweichung des Gaußpulses $p_s(t)$
au	Verzögerung
$ au_0$	Verzögerung des Empfangssignals (durch frequenzflachen Kanal)
$ au_{\mathrm{a}}$	Auflösung der Verzögerungsachse der gemessenen Kanalimpulsantwort
$\tilde{\tau}_l$	geschätzte Verzögerung des l -ten Pfades des Kanals
$ au_l$	Verzögerung des <i>l</i> -ten Pfades des Kanals
$ au_{\mathrm{A}}$	Ausbreitungszeit der Welle auf der Empfangsantenne
$ au_{\mathrm{K}}$	Verzögerung durch die Kabel
$\tau_{\rm max}$	maximale Verzögerung des Kanals
$ au_{ m max}^{ m M}$	maximale gemessene Verzögerung des Kanals
ν	Dopplerkreisfrequenz
$\chi_{ss}(\tau;\nu)$	Schmalband-Auto-Ambiguity-Funktion
$\chi_{sr}(\tau;\nu)$	Schmalband-Kreuz-Ambiguity-Funktion
$\chi_{sr}(\tau;\eta)$	Breitband-Kreuz-Ambiguity-Funktion
$\chi_{sr}(m;k)$	zeitdiskrete Schmalband-Kreuz-Ambiguity-Funktion
$\chi_{sr}(m;\eta)$	zeitdiskrete Breitband-Kreuz-Ambiguity-Funktion
$\chi_{ss,\text{ideal}}(\tau;\nu)$	ideale Schmalband-Auto-Ambiguity-Funktion
ζ	Verhältnis der relativen Geschwindigkeit zur Ausbreitungsgeschwindigkeit
	im Medium $-\frac{v}{c_{\rm M}}\cos\theta$
$\tilde{\zeta}$	geschätztes Verhältnis der relativen Geschwindigkeit zur
	Ausbreitungsgeschwindigkeit im Medium
$\zeta_{\rm max}$	maximales Verhältnis der relativen Geschwindigkeit zur
	Ausbreitungsgeschwindigkeit im Medium $\frac{v}{c_{\rm M}}$

ζ_{\min}	minimales Verhältnis der relativen Geschwindigkeit zur
	Ausbreitungsgeschwindigkeit im Medium $\frac{v_{\min}}{\alpha_i}$ für die minimale
	Geschwindigkeit

a	gesendete Bitfolge nach der Bitwiederholung
\hat{a}_k	empfangenes Bit
a_k	gesendetes Bit nach der Bitwiederholung
A	Amplitude des Gaußpulses $p_s(t)$
$A_{\rm K}$	Fläche eines platten Kondensators
b	gesendete Bitfolge vor der Bitwiederholung
b_j	gesendetes Nutzbit vor der Bitwiederholung
\tilde{b}_j	Empfangsbit
\overline{b}_r	gesendete Bits zur Kanal- bzw. Dopplerschätzung
В	Nutzbandbreite des Sendesignals
$B_{\rm d}$	Dopplerbandbreite
$B_{\rm rel}$	relative Bandbreite
$B_{\rm KS}$	Anzahl der Bits, erforderlich für eine Kanalschätzung
$B_{\rm M}$	gemessene Bandbreite
B_m	Breite der Stufe m in dem KKF-Verfahren
$c_{i,p}$	Polynom-Koeffizient für die Berechnung der Impulsantwort
	des Interpolationsfilters
c_{M}	Ausbreitungsgeschwindigkeit im Medium
$c_{\rm K}$	Ausbreitungsgeschwindigkeit im Kabel
с	Lichtgeschwindigkeit
C	elektrische Kapazität eines Dielektrikums
$C_i(\mu_l)$	Lagrange-Faktoren
$c_n^{(i)}$	TH-Code des <i>i</i> -ten Users
$d_{k,n}$	k-tes OFDM-Symbol des n -ten Subträgers
$d_{\rm K}$	Durchmesser eines platten Kondensators
$d_{\rm R}$	Durchmesser des Rotors
$d_{\rm S}$	innerer Durchmesser des Stators
$D_{\rm max}$	die größte geometrische Abmessung der abstrahlenden Antenne
$e(\tau)$	quadratischer Fehler
f_0	Trägerfrequenz
$f_{\rm d}$	Dopplerfrequenz
$f_{\rm dmax}$	maximale Dopplerfrequenz
$f_{\rm E}$	Frequenz des Empfängers
$f_{\rm E,Einstein}$	Frequenz des Empfängers nach der Relativitätstheorie
f_k	diskrete $k\text{-te}$ Frequenz aus dem Frequenzbereich der Kanalmessung
$f_{\rm mitt}$	mittlere Frequenz

Zeichen	Bedeutung
$f_{ m N}$	Nyquistfrequenz
$f_{\rm r}$	Drehfrequenz des Rotors
fs	Frequenz des Senders
fobe	obere Frequenz des Bandes
funt	untere Frequenz des Bandes
$\tilde{f}_0(\theta)$	wahrgenommene Trägerfrequenz nach einer Dopplerverschiebung
F_{\min}^{M}	untere Grenze des Frequenzbereiches für die Kanalmessung
$F_{\rm max}^{\rm MM}$	obere Grenze des Frequenzbereiches für die Kanalmessung
F_{\min}^{Max}	untere Grenze des Nutzspektrums
$F_{\rm max}^{\rm NN}$	obere Grenze des Nutzspektrums
$h(\tau)$	zeitinvariante Kanalimpulsantwort
$\tilde{h}(\tau)$	entzerrte zeitinvariante Kanalimpulsantwort
$h(\tau;t)$	zeitvariante Kanalimpulsantwort
$\tilde{h}(\tau;t)$	geschätzte zeitvariante Kanalimpulsantwort
$h_{\rm I}(l), h_{\rm Im}(i)$	Impulsantwort des Interpolationsfilters
$h(\tau_l; t_m) = h(l; m)$	zeitdiskrete Kanalimpulsantwort
$h_{\rm SV}(t)$	SV-Kanalimpulsantwort
$h_{\rm K}$	Dicke eines platten Kondensators
$H(j\omega)$	zeitinvariante Übertragungsfunktion des Kanals
$\widetilde{H}(j\omega)$	entzerrte geschätzte Übertragungsfunktion des Kanals
$H(f_k;\varphi_m) = H(k;m)$	diskrete Übertragungsfunktion des gemessenen Kanals
	im Bandpass-Bereich beim Winkel φ_m
$H_{\rm F}(k)$	diskrete Übertragungsfunktion der Fensterfunktion im
	Bandpass-Bereich
$H_{\rm HF}(k)$	diskrete Übertragungsfunktion der Fensterfunktion im
	Tiefpass-Bereich
$H_{\rm BB}(k;m)$	diskrete bandbegrenzte Übertragungsfunktion des Kanals
	im Bandpass-Bereich beim Winkel φ_m
$H_{\rm BBR}(k;m)$	reelle diskrete bandbegrenzte Übertragungsfunktion des Kanals
	im Bandpass-Bereich beim Winkel φ_m
K	Anzahl der Cluster
$K_{\rm f}$	Anzahl der äquidistanten diskreten Frequenzstellen der Messung
$K_{\rm B}$	Anzahl der äquidistanten diskreten Frequenzstellen in der
	Nutzbandbreite B
k_0	Index der Mittenfrequenz $f_{\rm mitt}$
L	Anzahl der Pfade in einem Kanal
$L_{\rm C}$	Anzahl der Pfade innerhalb des l -ten Clusters
$L_{\rm SA}$	Länge der Sendeantenne
$L_{\rm EA}$	Länge der Empfangsantenne
L_1	Länge des Kabels 1 angeschlossen an der Sendeantenne
L_2	Länge des Kabels 2 angeschlossen an der Empfangsantenne
$L_{\rm K}$	gesamte Länge der beiden Kabel 1 und 2

$M_{\rm S}$	Anzahl der Stufen in einem Block bei dem KKF-Verfahren
M	Filterordnung
$M_{\rm w}$	Winkelpositionen pro Umlauf an denen der Kanal gemessen wird
n	Brechungsindex
n(t)	additives weißes Rauschen
n_n, n_l	Ausgangspunkt der Abtastabweichung
$n_{\rm r}$	Drehzahl des Rotors
$\tilde{n_k}$	Index des Maximums der Kreuzkorrelation im KKF-Schätzverfahren
N	Anzahl der Korrelatoren in dem CAMBF-Schätzverfahren
N_{AB}	Anzahl der Abtastwerte innerhalb eines Beobachtungsfensters
$N_{\rm AW}$	Anzahl der Abtastwerte, damit eine Verschiebung um einen ganzen
	Abtasttakt auftritt
\tilde{N}_{AW}	geschätzte Anzahl der Abtastwerte, damit eine Verschiebung
	um einen ganzen Abtasttakt auftritt
$N_{\rm B}$	Anzahl der möglichen übertragbaren Bits pro Umlauf
N_c	TH-Codelänge, entspricht der Anzahl der User
$N_{\rm f}$	Anzahl der Finger eines Rake-Empfängers
NG	Anzahl der Abtastwerte in einem Schutzintervall beim MB-OFDM-Signal
Nĸ	Anzahl der Messkanäle in einem Rotortelemetrie-System
N _{KS}	Anzahl der Kanalschätzungen pro Umlauf
$N_{\rm R}$	Anzahl der Bits pro Umlauf zur Kanalschätzung
$N_{\rm s}$	Anzahl der Bitwiederholung in einem IR-UWB-Symbol
$N_{\rm SB}$	Anzahl der Symbole innerhalb eines Beobachtungsfensters
$N_{\rm w}$	Wortlänge des TH-Codes
N_z	Zeitpunkte einer gemessenen Impulsantwort
0	Überabtastungsfaktor
P	Polynomordnung des Interpolationsfilters
$p_a(t)$	erste Ableitung des Gaußpulses
$p_{ra}(t)$	erste Ableitung des Empfangs-Gaußpulses nach dem Doppler-Effekt
$p_s(t)$	Gaußpuls
$P(\tau), P(l)$	mittleres Verzögerungsleistungsdichtespektrum
$P_a(j\omega)$	Fourier-Transformierte der ersten Ableitung des Gaußpulses
$P_s(j\omega)$	Fourier-Transformierte des Sende-Gaußpulses
$P_{ra}(j\omega)$	Fourier-Transformierte des Empfangs-Gaußpulses nach dem Doppler-Effekt
$p_E(\eta)$	Verteilung des Skalierungsfaktors
r	Abstand zwischen Sende- und Empfangsantenne
$r_{\rm nf}$	Abstand eines Raumpunktes von einer Antenne, ab dem Fernfeldbedingungen
	herrschen
r(t)	Empfangssignal
r(n)	zeitdiskretes Empfangssignal
$\hat{r}(mt'_{\rm a})$	entsprechendes Empfangssignal skaliert durch die Dopplerverschiebung
$\check{r}(l)$	Empfangssignal vor der Unterabtastung am Ausgang des

XVIII VERZEICHNIS DER ABKÜRZUNGEN UND MATHEMATISCHEN SYMBOLE

Zeichen	Bedeutung
	Interpolationsfilters
$\breve{r}(n)$	Empfangssignal nach der Überabtastung am Eingang des
	Interpolationsfilters
$\tilde{r}(k)$	Empfangssignal nach der Unterabtastung am Ausgang des
	Interpolationsfilters
$R_{\rm b}$	Bitrate
$R_{\rm s}$	Brutto-Datenrate
$R_{\rm N}$	Netto-Datenrate
$R_{\rm Nmin}$	erzielte Datenrate
s(t)	Sendesignal
$\bar{s}(t)$	Pilotsignal zur Kanal- bzw. Dopplerschätzung
s(n)	zeitdiskretes Sendesignal
$s_{\text{mask}}(t)$	Maske zur Berechnung des Rake-Empfängers
$s_{\rm mask,d}(t)$	Maske zur Dopplerschätzung
$s_{\rm PAM}(t)$	PAM-modulierter Sendeimpuls
$s_{\rm PPM}(t)$	PPM-modulierter Sendeimpuls
$s_{\text{temp}}(t)$	TH-PPM-Template Signal zur Berechnung der Maske des Rake-Empfängers
$s_{\text{temp,d}}(t)$	TH-PPM-Template Signal zur Berechnung der Maske der Dopplerschätzung
$s_{\rm THPPM}(t)$	TH-PPM-modulierter Sendeimpuls
$S(\tau;\nu)$	Streufunktion
$S_{\rm d}(\nu), S_{\rm d}(f_{\rm d})$	mittleres Dopplerspektrum
$S_{21}(j\omega)$	Vorwärtsübertragungsfunktion der Streumatrix für ein 2-Tor
t	Zeit
t_m	diskreter Zeitpunkt, für den eine Kanalmessung erfolgt
$t_{\rm a}$	Abtastintervall
$t'_{\rm a}$	auf Grund der Dopplerverschiebung entsprechender Abtastintervall
	beim Empfänger
$t''_{\rm a}$	Abtastintervall des Interpolationsfilters
$t_{\rm amax}$	maximaler Abtastintervall
$T_{\rm a}$	Abtastintervall der Kanalimpulsantwort nach Interpolation
	in Zeitrichtung
$T_{\rm AW}$	Zeitintervall, in dem eine Verschiebung um einen ganzen
	Abtasttakt auftritt
<i>T</i>	Dauer eines OFDM-Symbols
7"	Dauer eines OFDM-Empfangssymbols auf Grund der Dopplerverschiebung
Tb	Bitdauer
$T_{\rm B}$	Zeitintervall zwischen zwei hintereinander folgenden Kanalschätzungen
T _{Bo}	Länge eines Beobachtungsfensters im LIRS-Verfahren
T _c	TH-Chipdauer
$T_{\rm PE}$	Abstand zwischen den ersten und letzten Empfangspulsen in einem
Ŧ	Beobachtungstenster
$T_{\rm K}$	Kohärenzzeit des Ubertragungskanals

Ankunftszeit des ersten Echos des <i>l</i> -ten Clusters Dauer eines IR-Symbols
Dauer eines IR-Empfangssymbols auf Grund der Dopplerverschiebung
Abstand zwischen den ersten und letzten Sendepulsen in einem
Beobachtungsfenster
Relativgeschwindigkeit zwischen Sender und Empfänger
Tangentialgeschwindigkeit des Rotors
maximale Tangentialgeschwindigkeit des Rotors
Ausdruck zur effektiven Implementierung des Interpolationsfilters
log-normal verteilter Schwund

.	Betrag
[.] _n	natürlicher Rundungsoperator
[.]	Aufrundung auf die nächste ganze Zahl
[.]	Abrundung auf die nächste ganze Zahl
(.)*	komplexe Konjugation
.*.	lineare Faltung
argmax	Index des Maximums
E[.]	Erwartungswertbildung
• — 0	inverse Fourier-Transformation