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The growing demand for physically motivated continuum theories of plasticity has led

to an increased effort on dislocation based field descriptions. Only recently rigorous

techniques have been developed by T. Hochrainer for performing meaningful averages

over systems of moving, curved dislocations, which can be described by a higher or-

der dislocation density tensor. Within this thesis we rewrite this continuum theory of

dislocations using exclusively standard vector and tensor calculus. This formulation is

much more accessible (although still defined in a higher order configuration space) than

the original formulation which uses differential forms and higher order currents. This

formulation then serves as the starting point for the numerical exploration of the contin-

uum theory where we cover simple benchmark problems, which allow for verification

with analytical solutions. This already demonstrates that within this theory it is possi-

ble to predict dislocation kinematics, which cannot be predicted by classical methods

based e.g. on the ‘Kröner-Nye tensor’. After this verification we then apply our nu-

merical implementation to a complex example: bending of a thin film in a double slip

configuration, which yields most interesting results concerning the general concept of

‘geometrically necessary’ and ’statistically stored’ dislocations. Another most impor-

tant outcome is that nearly all important kinematic properties of single dislocation lines

are still contained and numerically accessible within this averaged continuum descrip-

tion.

While we were pursuing the numerical exploration of the theory within this thesis, T.

Hochrainer further developed his continuum theory towards a formulation which under

certain simplifying assumptions does not require the higher order configuration space.

This is extremely beneficial from point of view of computational cost and stability. A

significant part of this thesis is concerned with verifying this simplified variant with the

original formulation. The result is that in many physically relevant cases both theories

yield very similar if not identical results.



In the third part of the thesis we tackle the problem of dislocation dynamics within the

continuum description. We propose a suitable method for computing stresses based on

the fact that a dislocation causes eigenstrain in an elastic continuum and demonstrate its

versatility and applicability with examples.
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• S. Sandfeld, M. Zaiser and T. Hochrainer, Application of a 3D-Continuum Theory
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Film, MRS Proceedings 2009, 1224-GG06-04
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Acronyms and abbreviations

The following acronyms are used:

CCT classical continuum theory (Kröner)

CDD Continuum Dislocation Dynamics (Hochrainer)

sCDD simplified version of CDD

SSD statistically stored dislocations

GND geometrically necessary dislocations

DDD discrete dislocation dynamics

FE finite element

FEM finite element method

The following superscripts are used:
d indicating a discrete object (as opposed to a continuous object)
pl plastic
el elastic
s number of slip plane
mf mean field
y yield
b back stress
l line tension

The following subscripts are used to denote the point of evaluation of e.g. a function:

(r,ϕ) point in the configuration space

(r) spatial point / spatial component of a point in the configuration space

(ϕ) line orientation / orientational component of a point in the configuration space
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Nomenclature

a nondimensional constant in Taylor relationship

b Burgers vector

b modulus of the Burgers vector

B drag coefficient

c spatial curve

C lifted curve

D nondimensional constant for back stress

e1, e2, e3 canonical unit vectors

G shear modulus

h film height, height of a (subvolume of a) crystal

J dislocation current

k mean curvature

l length of inclined slip plane (bending)

l (average) dislocation line direction

L generalised tangent

Lc length of a curve c

M bending moment

n (glide plane) normal vector

r, R radius

r distance vector

s line direction of a single dislocation line

s arc length of a curve

S area

t,Δt time, discrete time step

T line tension force

u displacement

v scalar velocity (in general)

v vector of scalar velocity
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Nomenclature

v(r,ϕ) scalar velocity (in the configuration space)

w width of a boundary layer

V generalised velocity

x, y, z cartesian coordinates

χ anisotropy factor for velocity

α Kröner-Nye tensor

αII dislocation density tensor of second order

β distortion tensor

ε strain tensor

εi,j,k permutation symbol

γ plastic slip

κ geometrically necessary dislocation density

μ shape factor for diffusion

ν Poisson ratio

ν unit normal to a curve

ϕ angle of line orientation

ρ scalar dislocation density in general

ρG geometrically necessary dislocation density

ρt total dislocation density

σ stress tensor

τ stress component (e.g. bending system)

ϑ rotational velocity

C tensor of elastic moduli

M∗ projection tensor

M symmetric part of the projection tensor
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Calculus notations

Throughout this thesis we use the following definitions and conventions:

Vectors and tensors are denoted by bold-face letters, whereas scalar quantities are writ-

ten non-bold (e.g. α as opposed to α).

Partial derivatives are abbreviated as ∂x(·) := ∂(·)
∂x

, ∇ denotes the gradient operator and

the divergence of a vector (tensor) field is written as div, curl denotes the curl-operator.

Second partial derivatives are abbreviated by a double subscript ∂xy(·) := ∂
∂x

∂(·)
∂y

.

The vector product is denoted by ×. For double indices we assume the summation

convention, if not stated otherwise. In c = a ⊗ b the tensor product is denoted by ⊗;

this operation reads for Cartesian coordinates in index notation cij = aibj .

The symmetric part of a tensor a is denoted by Syma := 1
2

(
a+ aT

)
.

We denote the twofold derivative in direction of the vector L by ∇2
L(v), where v is a

scalar.
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