Systemtheorie und Lebensdauerbewertung für Geräte der Meerestechnik

- Ein ganzheitlicher Ansatz -

Teil 1 Grundlagen

von Priv.-Doz. Dr.-Ing. habil. Dr. oec. Uwe Rudorf

Vorlesungen zur Meerestechnik

herausgegeben von:
Prof. Dr.-Ing. habil. M. Paschen
Priv.-Doz. Dr.-Ing. habil. Dr. oec. U. Rudorf
Dr.-Ing. S. Schreier
Dipl.-Technomath. H. Knuths

Uwe Rudorf

Systemtheorie und Lebensdauerbewertung für Geräte der Meerestechnik

Teil 1 Grundlagen

Shaker Verlag Aachen 2010

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Copyright Shaker Verlag 2010 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-9454-0 ISSN 2190-9962

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Inhaltsverzeichnis

A	bbild	ıngsverzeichnisII	Ι
E	inleitu	ing	1
1	Die	Entstehung des Systemgedankens	4
	1.1	Die Systemtheorie nach Luhmann	5
	1.2	Definition eines technischen Systems und seiner Systemkomponenten.	9
	1.3	Geschichtliche Betrachtung1	1
	1.4	Phasen des Systemgedankens1	3
	1.5	Weitere Definitionenk1	3
2	Die	Einheit von Systemgedanken und Systemlebensdauer1	7
	2.1	Das Umfeld des Systemgedankens	7
	2.2	System und Produkt	9
	2.3	Die Lebensdauer eines Systems	0
3	Die	Darstellung der Lebensdauer	3
	3.1	Die Etappen des Lebensdauerzyklusses2	3
	3.2	Varianten der konzeptionellen Betrachtung der Einzelphasen2	5
	3.3	Einflussfaktoren auf den Lebensdauerzyklus2	7
	3.4	Veränderung von Materialeigenschaften im Lebensdauerzyklus2	9
4	Me	ssung und Vorschau der Lebensdauer3	1
	4.1	Messung von Lebensdauerdaten	1
	4.2	Die Gebrauchsdauer	4
	4.3	Die Ermittlung von Gebrauchsdauerkennwerten	5
	4.3.	1 Gebrauchsdauerkenndatenermittlung für Kunststoffe3	6
	4.3.	2 Gebrauchsdauerkenndatenermittlung für metallische Werkstoffe .4	4
	4.3.	3 Gebrauchsdauerkenndatenermittlung für beschichtete metallische	••
		Werkstoffe4	8
	4.3.	4 Gebrauchsdauerdaten für elektrische und elektronische Kompo	••
		nenten4	9

	4.4	Die Kombination von Gebrauchsdauerdaten	49
	4.4	.1 Die Einzelwertfolge von Gebrauchsdauerzyklen	51
	4.4	.2 Die Darstellung zusammenfassender Werte von Gebrauchs	
		dauerzyklen	52
	4.4	.3 Die Nutzung des Minimalwertes der Gebrauchsdauerzyklen	53
	4.4	4 Die Nutzung des Medians von Gebrauchsdauerwerten	55
	4.5	Lebensdauervoraussagen aus Gebrauchsdauerwerten	63
5	Die	Kostenbewertung der Produktlebensdauer	67
	5.1	Der Kostenbegriff	68
	5.2	Kostenentwicklung während der Produktlebensdauer	69
	5.3	Einfluss der Alterung	72
	5.4	Einsatz von Stabilisatoren	73
	5.5	Veränderung der Belastungsgrenzen	74
	5.6	Einfluss von Reparatur, Instandhaltung und Modernisierung	76
6	Die	Ökologie im Rahmen der Systemtheorie	81
	6.1	Systemphasen und Ökologie	81
	6.2	Schwerpunkte in der herstellerdominierten Phase	83
	6.3	Schwerpunkte in der anwenderdominierten Phase	85
	6.4	Schwerpunkte in der entsorgungsdominierten Phase	86
	6.5	Ökobilanz für ein technisches System	87
7	Die	Anwendung des Systemgedankens in der Meerestechnik	91
	7.1	Systeme in der Meerestechnik	91
	7.2	Vorteile des Systemgedankens	93
	7.3	Nutzung des Systemgedankens	94
8	We	iterentwicklungsmöglichkeiten der Systemtheorie im Rahmen d	er
	Me	erestechnik	96
9	Lit	eraturverzeichnis	99

Abbildungsverzeichnis

Abbildung 1.1	Unterschiedliche Betrachtungsweisen für ein System4
Abbildung 1.2	Aufbau eines Systems in räumlicher Betrachtungsweise10
Abbildung 2.1	Zusammenhang zwischen System und Umgebungsmedium18
Abbildung 2.2	Darstellung des Lebensdauerbegriffes in unterschiedlichen
	Sichtweisen
Abbildung 3.1	Wesentliche Etappen des Lebensdauerzyklusses23
Abbildung 3.2	Die Phasen der Polymernutzungsdauer
Abbildung 4.1	Probekörper für Zugfestigkeits-Dehnungs-Prüfungen,
	Abmessungen
Abbildung 4.2	Probekörper für Zugfestigkeits-Dehnungs-Prüfungen,
	Aussehen
Abbildung 4.3	Ansicht einer Zugdehnungsmaschine zur Ermittlung von
	Messwerten für die Zugfestigkeit und Reißdehnung39
Abbildung 4.4	Ansicht der Einspannfutter einer Zugdehnungsmaschine mit \dots
	der Kennzeichnung der Einspannbewegung für die Prüflinge
	(grün) und der Bewegungsrichtung der Dehnung (rot)39
Abbildung 4.5	Typisches Zug-Dehnungs-Diagramm für 5 Kunststoff-Prüf
	körper40
Abbildung 4.6	Graph zur Ermittlung eines Einzelwertes der Gebrauchsdauer
	bei einer festgelegten Prüftemperatur41
Abbildung 4.7	Zusammenführung der Einzelwerte der Gebrauchsdauer in
	einer Grafik42
Abbildung 4.8	Extrapolation des Einzelwertgraphen der Gebrauchsdauer
	auf niedrigere Temperaturen
Abbildung 4.9	Prinzipdarstellung eines metallischen Prüfkörpers45
Abbildung 4.10	Prinzipbeispiel eines Zug-Dehnungs-Diagramms für metal
	lische Prüfkörper46

Abbildung 4.11	Unterschiedliche Werte der Gebrauchsdauer für Einzelele
	mente eines Systems50
Abbildung 4.12	Darstellung der Aufeinanderfolge der Gebrauchsdauerzyklen
	für die 5 Elemente des Systems51
Abbildung 4.13	Unterschiedliche statistische Werte für die Gebrauchsdauer
	der Systemelemente53
Abbildung 4.14	Vereinheitlichung der Gebrauchsdauerzyklen des Systems
	beim Minimalwert54
Abbildung 4.15	Differenzen der Gebrauchsdauerwerte bei Nutzung des
	Medianwertes55
Abbildung 4.16	Darstellung der Risikobereiche bei Mediannutzung für die
	Systemgebrauchsdauer
Abbildung 4.17	Verschiedene Dichtefunktionen der Normalverteilungen57
Abbildung 4.18	Darstellung der Mediannutzung für die Systemgebrauchsdauer
	über zwei Medianwertzyklen
Abbildung 4.19	Extrapolationsbeispiel für einen Gebrauchsdauerparameter60
Abbildung 4.20	Unterschied zwischen Gebrauchsdauer $T_{SYST} und Lebens$
	dauer T _{Leb} 63
Abbildung 5.1	Prinzipielle Darstellung des Kostenverlaufes in der hersteller
	dominierten Phase des Lebensdauerzyklusses eines Systems 70
Abbildung 5.2	Darstellung der Kosten über den gesamten Lebensdauer
	zyklus eines Systems
Abbildung 5.3	Kumulative Kostendarstellung der einzelnen Lebensdauer
	phasen
Abbildung 5.4	Prinzipielle Abhängigkeit zwischen realer Belastung und
	Alterungsverhalten von Parametern bei Materialien und
	Komponenten bei nicht irreversibler Materialschädigung75
Abbildung 5.5	Einfluss einer irreversiblen Belastung auf den Alterungs
	prozess
Abbildung 5.6	Einfluss der Reparatur auf die Materialeigenschaft77

Abbildung 5.7	Einfluss der Instandhaltung auf die Materialeigenschaft77
Abbildung 5.8	Kosteneinsparungspotential durch regelmäßige Instand
	haltung
Abbildung 5.9	Kosteneinsparungspotenzial durch regelmäßige Instandhal
	tung und Modernisierung
Abbildung 5.10	Darstellung des Nutzungsprozesses einer Systemkomponente .
	mit Nutzung der Instandhaltung
Abbildung 5.11	Darstellung des Nutzungsprozesses einer Systemkomponente .
	mit ausschließlichem Einsatz von Reparaturen80
Abbildung 6.1	Einordnung der Umwelttechnik in die Systemtechnik81
Abbildung 6.2	Einfluss der ökologischen Bewertung auf alle Systemphasen 82
Abbildung 6.3	Gesamtzusammenhang zwischen Technik, Kosten und Um
	welt
Abbildung 6.4	Darstellung des Inhalts einer Ökobilanz vom ABMG-itm88
Abbildung 6.5	Umweltwirkungen, dargestellt in einer Ökobilanz89