
Robust Numerical Algorithms Based on
Corrected Operator Splitting

for Two-Phase Flow in Porous Media

Von der Fakultät Mathematik und Physik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Yufei Cao

aus Yantai, China

Hauptberichter: Prof. Dr.rer.nat. Barbara Wohlmuth
Mitberichter: Prof. Dr.-Ing. Rainer Helmig

Prof. Dr.rer.nat. Ivar Aavatsmark

Tag der mündlichen Prüfung: 08. Juni 2010
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Notation

The following table shows the significant symbols used in this work. Local notations
are explained in the text.

Symbol Definition Dimension

Greek Letters:

α Van Genuchten parameter [ Pa−1 ]
ΓD Dirichlet boundary part of ∂Ω [ - ]
ΓN Neumann boundary part of ∂Ω [ - ]
γ angle deformation [ rad ]

parameter needed in Van Genuchten relative
permeability function

[ - ]

angle between the streamline direction and the
normal vector on a cell edge

[ ◦ ]

γij cell facet between cellsKi and Kj [ - ]
Δt time step size in the case without using operator

splitting
[ s ]

splitting step in the case using operator splitting [ s ]
Δta inner time step of the advection equation in op-

erator splitting
[ s ]

Δtd inner time step of the diffusion equation in oper-
ator splitting

[ s ]

Δx,Δy discretization lengths in x- and y-direction [ m ]
ε parameter needed in Van Genuchten relative

permeability function
[ - ]

dimensionless scaling factor [ - ]
θ contact angle [ ◦ ]
λ Brooks-Corey parameter (pore size distribution

index)
[ - ]

λα mobility of phase α [ (ms)/kg ]
λt total mobility [ (ms)/kg ]



Notation V

μ dynamic viscosity [ kg/(ms) ]
μα dynamic viscosity of phase α [ kg/(ms) ]
ν scaled normal vector [ m ]
ρ density [ kg/m3 ]
ρα density of phase α [ kg/m3 ]
σ interfacial tension [ N/m2 ]
τ shear stress [ N/m2 ]

time-of-flight along a streamline [ s ]
φ porosity [ - ]
φi standard nodal basis function for node xi of Th [ - ]
χ characteristic function [ - ]
Ψ slope limiter function [ - ]
ψi new basis function for interior node xi of Th [ - ]
Ω solution domain [ - ]
∂Ω boundary of domain Ω [ - ]

Latin Letters:

C,C1, C2 generic constants [ - ]
C(Ω) linear space of continuous functions [ - ]
C one-dimensional coarse grid [ - ]
Fa numerical advective flux [ m2/s ]
Fd numerical diffusive flux [ m2/s ]
F one-dimensional fine grid [ - ]
G gravity term [ kg/(m2s2) ]
H discretization length of the coarse grid C [ m ]
H−s(Ω) dual space of Hs(Ω), s > 0 [ - ]
Hh discrete solution operator of the diffusive step [ - ]
I identity matrix [ - ]
Ih, Îh, I∗h, Ph interpolation operators [ - ]
ÎΓN

, I∗ΓN
traces of Îh, I∗h on Neumann boundary ΓN [ - ]

J partition of time interval [ - ]
K grid cell of MPFA mesh (or control volume for

cell-centered finite volume method)
[ - ]

∂K boundary of grid cell or control volume K [ - ]
K intrinsic permeability [ m2 ]
Kα effective permeability of phase α [ m2 ]
L number of inner time steps�td [ - ]
Lp(Ω), Hs(Ω) Sobolev spaces ( p = 2,∞, s > 0 ) [ - ]
L space differential operator [ - ]
La advection operator [ - ]



VI Notation

Ld diffusion operator [ - ]
N number of time/splitting steps [ - ]
Nh node index set of Th [ - ]
P global pressure [ Pa ]
Pf

c , P̂f
c prolongation operators from C to F [ - ]

R rotation matrix [ - ]
Rc

f restriction operator from F to C [ - ]
R,R2,R3,Rd Euclidean spaces [ - ]
ST simplified L triangle [ - ]
Sα saturation of phase α [ - ]
Sαr residual saturation of phase α [ - ]
Se effective saturation [ - ]
Sh discrete solution operator of the advective step [ - ]
T L triangle [ - ]
T simulation time [ s ]

temperature [ ◦C ]
Th finite element mesh [ - ]
T̂h MPFA mesh (partition of domain Ω) [ - ]
T ∗h dual mesh of Th [ - ]
V control volume for vertex-centered finite volume

method
[ - ]

Vh finite element space [ - ]
V ∗h dual volume element space [ - ]
e edge [ - ]

relative discrete L2 norm of the error [ - ]
f, f̄ , f̂ , f̃ fluxes through a certain edge [ m2/s ]
fα fractional flow function of phase α [ - ]
g (scalar) gravity [ m/s2 ]
g gravity vector (0, 0,−g)T [ m/s2 ]
gN Neumann boundary value [ m/s ]
h maximum diameter of all grid cells [ m ]

discretization length of the fine grid F [ m ]
hK diameter of grid cellK [ m ]
k scalar intrinsic permeability [ m2 ]
krα relative permeability of phase α [ - ]
l length of line segment [ m ]
m Van Genuchten parameter [ - ]
n Van Genuchten parameter [ - ]
n unit normal vector [ - ]
p, p̄ pressure [ Pa ]
pα pressure of phase α [ Pa ]
pc capillary pressure [ Pa ]



Notation VII

pd entry pressure [ Pa ]
q source/sink [ 1/s ]
qα source/sink of phase α [ 1/s ]
r radius [ m ]

saturation gradient ratio [ - ]
s streamline (nodes) [ - ]
s arc length along a streamline [ m ]
t time [ s ]

transmissibility coefficient [ (m3s)/kg ]
t unit tangential vector [ - ]
u unknown of a differential equation [ - ]
v⊥ normal velocity [ m/s ]
v Darcy velocity [ m/s ]
vα phase velocity of phase α [ m/s ]
vαm modified phase velocity of phase α [ m/s ]
va average velocity [ m/s ]
vt (Darcy) total velocity [ m/s ]
vta average total velocity [ m/s ]
w front velocity [ m/s ]
wa average front velocity [ m/s ]
x, x̄, x

′

, x
′′

, y points in the Euclidean space [ - ]
xc shock collision point [ - ]

Subscripts:

α phase, either wetting (w) or
non-wetting (n)

K grid cell
c envelope
h mesh size
n non-wetting phase
res residual flux
w wetting phase

Superscripts:

D Dirichlet boundary
L left side
N Neumann boundary
R right side
d number of dimensions
l inner time step
n time/splitting step




