
Shaker Verlag
Aachen 2010

Berliner Schriften zu
modernen Integrationsarchitekturen

herausgegeben von
Prof. Dr.-Ing. habil. Andreas Schmietendorf

Hochschule für Wirtschaft und Recht Berlin, FB II

Band 4

Makram Hanin,
Andreas Schmietendorf,

Wolfram Greis (Eds.)

Application Performance Management
in complex integration architectures:

JEE, SOA and Web 2.0

ceCMG APM Workgroup

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet
at http://dnb.d-nb.de.

Copyright Shaker Verlag 2010
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8322-8692-7
ISSN 1867-7088

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

Preface

ceCMG APM Workgroup i

Towards the Maturity Era of IT Performance

In the beginning, we had low-level system programming. Programs consisted of
instructions directly accessing computing resources. Then, performance became a
major concern to the program and system designers, especially because of the
limited computing capacity available.
Later, when the first business-relevant systems appeared, IT performance con-
cerns continued to be strongly related to the resource usage in terms of CPU,
memory and I/O. However, performance and tuning specialists became involved
in design decisions as well as in development, with more structured and proce-
dural programming languages.
The rapid evolution of computing hardware gave IT professionals huge opportu-
nities in terms of resources and performance, while the business relevance of IT
systems increased. A kind of an informal “convention” took place: developers
were to concentrate on functional requirements, while system engineers were to
tune the system and allocate resources later in production. However, universities
kept teaching complexity theory, data structures and algorithm optimization me-
thods, which were used by only a minority of IT professionals and in rare situa-
tions. The first Software Engineering models, such as waterfall or even the itera-
tive models, concentrated mainly on functional requirements, to optimize the pro-
ductivity of developers.
The age of the client-server architecture added new challenges to the scope of IT
performance. Understanding, evaluating and managing concurrency on the server
and the network became tedious tasks for network and system engineers. Network
sniffers and probes, server and database agents, log and trace files emerged as per-
formance management techniques. However, the performance of production envi-
ronments remained a concern: software test engineers (not architects or develop-
ers) started using load testing tools to evaluate the stability and resource usage of
applications with a large number of users (especially with the emergence of the
web). System and network engineers were also involved, since they owned the
access to agents, probes and log files.
At this stage, the increasing rate of project failures at the end of the development
phase or in the deployment phase, because of performance issues (mostly related
to design decisions), led to the first attempts to take performance into account in
both of these phases. C. Smith coined the term “Software Performance Engineer-
ing”, where architecture and design decisions could be evaluated using models
combining use case steps and computing resources requirements. Due to the com-
plexity and large effort required to build and maintain such models, model-based
performance engineering was not widely adopted in the industry: this meant that,
system engineers and some testing engineers continued to work on performance
issues like fire-fighters; they were sometimes lucky to be able to fix (or hide) per-

M. Hanin

ii adhoc International – Basel

formance issues. The “e-enthusiasm” experienced in the early days of the Internet
induced a management of performance that was both reactive and expensive: ex-
cessive and unplanned resources had to face major performance issues in produc-
tion. “Lucky” projects survived, while “unlucky” ones died!
The severe failure of some prominent e-projects, combined with the economic
restrictions that followed the Internet bubble burst, were behind the emergency of
new performance engineering concepts, where a systematic approach replaced the
early prediction models. Such an adoption of a measurement-based approach,
used to evaluate performance requirements modeled using scenarios (a combina-
tion of critical use cases and usage patterns and profiles) was enabled by the wide
use of the Java Platform. Indeed, the generalization of virtual machines between
the OS and the application, with garbage collection and later component contain-
ers, made it necessary to use measurement techniques such as profiling and byte-
code injection. Today, these measurement- and lifecycle-based performance engi-
neering approaches are recognized by experienced and mature IT organizations.
However, a systematic integration into existing organization, processes and tech-
nical environments requires changes at several levels, as well as governance ap-
proaches, to improve costs and sustainability within the organization.
This booklet on the topic of performance is intended to be a first concrete partici-
pation of our Application Performance Management Workgroup within the
CeCMG, towards more maturity and standards of IT Performance within the
community.
The first paper introduces a proven and widely-used methodology for Perform-
ance Engineering, based on measurement. The second one compiles several real-
world experiences of measurement-based performance engineering in the finan-
cial industry. The tedious task of understanding and handling memory issues in
Java and how the capabilities of Performance Engineers can be extended, are
dealt with in the third paper.
The second part of the booklet deals with some technical aspects related to Java
Performance: the trade-off between security and performance when using web
services, and the impact of the choice of a remoting technique such as EJB or
Spring on performance.
The third part of the booklet tackles innovative approaches to increase the value
of measurement-based performance engineering: a Java-based load testing ap-
proach is presented to help in the evaluation of the performance of JEE designs or
critical JEE components. Another paper shows how to further leverage a continu-
ous integration platform by adding performance checks and dashboards to the ar-
tifacts produced by nightly builds. In addition to the industrialization approaches
mentioned in the latter paper, “more intelligence” is needed in the field of IT Per-
formance, when dealing with huge amounts of performance data collected every

Preface

ceCMG APM Workgroup iii

day in production. To reach that goal, a self-learning performance management
approach is presented in the last paper.
Working towards more maturity in the IT Performance area requires more experi-
ence and real-world reports from professional users of performance engineering,
more studies and benchmark reports when it comes to new frameworks and tech-
nologies, and finally more innovation to handle technical and organizational bar-
riers. We consider this as our mission at the ceCMG APM Workgroup, and we are
looking forward to more feedback and cooperation.

Basel, March 2010

Makram Hanin - adhoc International
Email: makram.hanin@adhoc-international.com

M. Hanin

iv adhoc International – Basel

Table of contents

ceCMG APM Workgroup v

Table of contents
Makram Hanin, Nabil Ouerhani, Marc Lerman

Introducing a Proven Measurement-Based
Performance Engineering Approach for the Whole
Application Lifecycle .. 1

Karim Limam, Christian Räss
Optimizing Performance Testing
(Pitfalls & Challenges) .. 11

Mohammad Seyed Alavi, Marc Lerman, Olivier Weinstoerffer
Improving Java Performance Engineering with
Extended Heap Memory Analysis... 23

Ahmed Daoud, Rim Souissi
Trade-off in Java applications between
Security and Performance ... 31

Marion Chardon, Marc Lerman, Gregory Laplace
Evaluating the Performance Impact
of Java Remoting Technologies ... 45

Mohammad Seyed Alavi, Venelin Mitov, Marc Lerman
Initial Design Elements for
a Java-Based Load Testing Platform .. 57

Venelin Mitov, Marc Lerman, Christophe Knuchel
Embedding Performance into Continuous Integration..................... 67

Graham Gillen, Jorgen Johansen
Self-Learning Performance Management
Comes of Age .. 79

