PI-Observer Techniques Applied to Mechanical Systems

Von der Fakultät Ingenieurwissenschaften, Abteilung Maschinenbau und Verfahrenstechnik der Universität Duisburg-Essen zur Erlangung des akademischen Grades

DOKTOR-INGENIEURIN

genehmigte Dissertation

von

Svenja Kirchenkamp aus Krefeld

Referent: Korreferenten: Univ.-Prof. Dr.-Ing. D. Söffker Univ.-Prof. Dr. rer. nat. P. C. Müller Univ.-Prof. Dr. rer. nat. G. Freiling

Tag der mündlichen Prüfung: 17. Dezember 2009

Berichte aus der Steuerungs- und Regelungstechnik

Svenja Kirchenkamp

PI-Observer Techniques Applied to Mechanical Systems

> Shaker Verlag Aachen 2010

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: Duisburg-Essen, Univ., Diss., 2009

Copyright Shaker Verlag 2010 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8322-8951-5 ISSN 0945-1005

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de Die vorliegende Arbeit entstand überwiegend während meiner Zeit als wissenschaftliche Mitarbeiterin im Fachgebiet Sicherheitstechnische Regelungs- und Messtechnik an der Bergischen Universität Wuppertal und am Lehrstuhl Steuerung, Regelung und Systemdynamik an der Universität Duisburg-Essen, sowie während meiner Zeit als DAAD-Stipendiatin im Departamento de Engenharia Mecânica an der Pontifícia Universidade Católica do Rio de Janeiro.

Zuerst möchte ich Herrn Prof. Dr.-Ing. Dirk Söffker für die Möglichkeit zur Promotion und für die Zeit, die er in die Betreuung meiner Arbeit investiert hat, danken. Ebenfalls danken möchte ich Herrn Prof. Dr. rer. nat. Peter C. Müller für sein dieser Arbeit entgegengebrachtes Interesse und die Erstellung des Zweitgutachtens, sowie Herrn Prof. Dr. rer. nat. Gerhard Freiling für die Übernahme des Drittgutachtens. Herrn Prof. Dr.-Ing. Hans Ingo Weber und Herrn Prof. Ph. D. Rubens Sampaio danke ich für ihre Gastfreundschaft und die konstruktiven Gespräche.

Bei meinen Kollegen des Lehrstuhls Steuerung, Regelung und Systemdynamik bedanke ich mich für die angenehme Arbeitsatmosphäre und die Hilfsbereitschaft. Insbesondere möchte ich Herrn Dr.-Ing. Elmar Ahle, Herrn Dipl.-Ing. Kai-Uwe Dettmann, Herrn Dipl.-Ing. Frank Heidtmann, Herrn Dr.-Ing. Idriz Krajcin, Frau M. Eng. Yan Liu und Herrn Dr.-Ing. Krischan Wolters für die freundschaftliche Zusammenarbeit und die Unterstützung, auch noch in den Jahren nach meinem Abschied aus Duisburg, danken. Além disso, eu quero agradecer aos colegas da PUC que me apoiram durante minha estadia no Rio. Ebenso danke ich Herrn Dr.-Ing. Andreas Bockstedte für die motivierende Unterstützung während der letzten Jahre und für das konstruktive kritische Korrekturlesen dieser Arbeit.

Nicht zuletzt danke ich meiner Familie, die mich unterstützt und mir Rückhalt gegeben hat.

Gifhorn, Dezember 2009 Svenja Kirchenkamp

Contents

N	omer	ıclatur	e	III
1	Intr	roducti	on	1
2	PI-	Observ	er for Virtual Measurements	3
	2.1	PI-Ob	server	3
		2.1.1	Observers and Dealing with Disturbances	3
		2.1.2	Set-Up and Structure of the PIO $\ \ldots \ $	9
		2.1.3	Demands on the PIO Design	11
		2.1.4	Convergence Considerations in Time Domain	16
	2.2	PI-Ob	server as a Virtual Measurement Device	27
	2.3	Exam	ple: Application to the Rail-Wheel Contact Problem	29
		2.3.1	Rail-Wheel Contact	29
		2.3.2	Simulation Results	45
3	PI-0	Observ	er for Model Validation	49
	3.1	Appro	ach of Model Validation	49
		3.1.1	Model Validation	49
		3.1.2	PIO for Model Validation	51
	3.2 Example: Elastic Beam		52	
4 Application of the PIO Using Acceleration Measurements		on of the PIO Using Acceleration Measurements	57	
	4.1	Using	Acceleration Measurements	57
4.2 Approaches		Appro	aches	62
		4.2.1	Derivative of the System	62
		4.2.2	"Reciprocal State-Space" Methodology	63
		4.2.3	Extended Output Equation	66
	4.3	Observ	vability considerations	69
5	Sun	nmary	and Outlook	79

Α	A Appendix to Chapter 2		
	A.1	Observer error for an one-dimensional constant disturbance	81
	A.2	Observer error for an one-dimensional constant disturbance - more general	82
	A.3	Example: $CN=0$ is necessary but not sufficient $\ldots \ldots \ldots \ldots$	83
B Appendix to Chapter 4			85
	B.1	Resisting error of (4.25) cannot be observed by a PIO $\ldots \ldots \ldots \ldots$	85
	B.2	Additional observer does not deliver information about initial conditions $\ $.	86
	B.3	Resisting error of (4.25) cannot be filtered out $\ldots \ldots \ldots \ldots \ldots$	86
	B.4	Solution of the PIO in consideration of acceleration measurements	87
R	References		

References

Nomenclature

Abbreviations

LTR	Loop Transfer Recovery
PIO	Proportional Integral Observer
RSS	Reciprocal State-Space
UIO	Unknown Input Observer

Vectors and Matrices

e	error vector related to the extended state vector	
\boldsymbol{e}_0	error vector related to the initial conditions of the state vector	
e_{∞}	remaining error for $t \to \infty$	
e_f	error vector related to the approximation of the nonlinearities	
\boldsymbol{e}_x	error vector related to the state vector	
e_z	error vector related to the state vector $\boldsymbol{z}_{\mathrm{n}}$	
f	vector function of nonlinearities	
$m{f}_{ m new}$	further vector function of nonlinearities	
f^*	vector function of nonlinearities, also including known parts	
$ ilde{f}$	vector function of nonlinearities at the consideration of model inaccu-	
	racies	
${m f}_{ m F}$	F vector of forces	
h	vector which represents the model inaccuracies	
$oldsymbol{i}_lpha$	α -th unit vector	
r	residual (of the UIO)	
u	input vector	
$ ilde{u}$	input vector of the dual system	
v	approximation of the nonlinearities \boldsymbol{f}	
\boldsymbol{x}	state vector	
$m{x}_{ m new}$	further state vector	
$ ilde{x}$	state vector of the transformed/dual system	
\hat{x}	observed state vector	
$oldsymbol{x}_0$	initial state vector	
$oldsymbol{\hat{x}}_0$	initial state vector of the observer	
$oldsymbol{\hat{x}}_{0,2}$	initial state vector of a second observer	
$oldsymbol{x}_1$	state vector	
$oldsymbol{x}_{ ext{e}}$	extended state vector for the PIO	
$oldsymbol{x}_{ m new}$	state vector which contains velocities and accelerations	

y	output vector	
\hat{y}	output vector of the observer	
$oldsymbol{y}_{ m new}$	integrated output vector	
z	observed transformed state vector	
$\boldsymbol{z}_{\mathrm{n}}$	extended state vector for dealing with measurement noise	
$\delta_{ m n}$	measurement noise vector	
ψ	LAGRANGE-multiplier	
$ ilde{\psi}$	LAGRANGE-multiplier for the dual system	
4		
A	further system metric	
Anew	auther system matrix	
	system matrix without model inaccuracies	
	autonded system matrix for the PIO	
A c	extended system matrix for the PIO	
An A	system matrix for the system description based on z_n	
Ar P	input matrix	
D D	input matrix	
D D	input matrix	
D _e D	input matrix for the system description based on x	
D _n D	input matrix for the system description based on z_n	
D _r	rearranged input matrix of the RSS representation	
C^*	output matrix which describes the available acceleration measurements	
C	output matrix which describes the available acceleration measurements	
C a	output matrix for the consideration of accelerations	
U _{ae}	$_{ie}$ extended output matrix for the P1O for the consideration of accelerations	
C	accelerations	
C_{e}	extended output matrix for the system description based on σ	
	output matrix for the system description based on $z_{\rm n}$	
ם ח	damping matrix	
D _a E	input matrix of the RSS representation	
F	mput matrix of the K55 representation	
C C	system matrix of the BSS representation	
G	system matrix of the K55 representation	
H	matrix of the opproximation of the poplinearities f	
H	matrix for the approximation of the nonlinearities J	
I.	identity matrix of dimension n	
J_{n}	input matrix of the UIO	
K K	stiffness matrix	
K.	state feedback matrix	
K_c	output feedback matrix	
L	observer gain matrix	
_		

L^*	observer gain matrix	
L_1	observer gain matrix belonging to the proportional part of the PIO	
L_2	observer gain matrix belonging to the integral part of the PIO	
L_{a}	observer gain matrix for the consideration of accelerations	
L_{a_1}	part of the observer gain matrix $L_{\rm a}$	
$L_{ m ae}^{-1}$	extended observer gain matrix for the PIO for the consideration of	
_	accelerations	
$L_{ m e}$	extended observer gain matrix for the PIO	
$L_{ m n}$	observer gain matrix for the PIO for the system description based on	
	${m z}_{ m n}$	
$L_{ m r}$	rearranged observer gain matrix of the RSS representation	
$L_{ m u}$	observer matrix of the UIO	
M	mass matrix	
N	matrix which allocates the nonlinearities to the state space description	
$oldsymbol{N}_{ m new}$	further nonlinearities allocating matrix	
N^+	pseudo inverse matrix of N	
$oldsymbol{N}^*$	nonlinearities allocating matrix, also including known parts	
$ ilde{N}$	nonlinearities allocating matrix at the consideration of model inaccu-	
	racies	
N_{a}	nonlinearities allocating matrix at the consideration of accelerations	
$N_n^{"}$	nonlinearities allocating matrix for the system based on \boldsymbol{z}_n	
0	Kalman observability matrix	
P	solution of the matrix RICCATI equation or the LYAPUNOV equation	
\tilde{P}	solution of the matrix RICCATI equation for the dual system	
0	weighting matrix	
õ	weighting matrix for the dual system	
R R	weighting matrix	
Ř	weighting matrix for the dual system	
S	transformation matrix	
T T	transformation matrix	
I V	model of the nonlinearities f	
V.	correlation matrix of \mathbf{f} and \mathbf{a}	
V K W/	transformation matrix for the extended observer metrix	
vv _e 7	transformation matrix for the extended observer matrix	
∠u _e	transformed extended observer matrix	

Scalars and Functions

a	constant
$\tilde{a}_{\mu\nu}$	$\mu,\nu\text{-th}$ element of the inverse system matrix \boldsymbol{A}^{-1}
b	degree of stability

С	constant	
f	scalar function of nonlinearities (i.e., \boldsymbol{f} of dimension 1)	
i	index	
k	index	
J	performance index of the feedback control	
\tilde{J}	performance index of the observer	
l_s	s-th element of the observer gain matrix	
\overline{m}	dimension of the input vector \boldsymbol{u}	
$m_{\rm add}$	additional mass	
n	dimension of the state vector \boldsymbol{x}	
n_1	dimension of the state vector \boldsymbol{x}_1	
p^{-}	index	
\overline{q}	observer gain included in the set-up of \boldsymbol{Q}	
r_1	dimension of the output vector \boldsymbol{y}	
r_2	dimension of the vector function \boldsymbol{f}	
r_3	dimension of \boldsymbol{v}	
s	index	
t	time	
t_0	initial time	
T	time, integration limit	
u	scalar input (i.e., \boldsymbol{u} of dimension 1)	
w_i	deflection	
x_{mass}	displacement at the node of an additional mass	
y	scalar output (i.e., \boldsymbol{y} of dimension 1)	
z	number of the first derivation of the disturbance \boldsymbol{f} which is equal zero	
α	index of the measured state	
β	index of the state influenced by the nonlinearity f	
γ	grade of the differentiation	
δ	Kronecker symbol	
ε	one-dimensional model of the nonlinearities f	
λ	eigenvalue	
μ	index	
ν	index	
$\nu_{\rm B}$	observability index	
φ_i	inclination angle	
Е	expectation value	
H	HAMILTON function	

Section 2.3

semimajor axis	
semiminor axis	
spring between drive and wheelset	
longitudinal wheelset spring	
vertical wheelset spring	
damper between drive and wheelset	
longitudinal wheelset damper	
vertical wheelset damper	
eccentricity coefficient	
gravitational constant	
mass of the wheelset	
radius of the wheel	
radii of the wheels (left and right side)	
vertical displacements at the contact	
longitudinal displacement of the wheelset	
vertical displacement of the wheelset	
translational velocity	
elliptic integral	
KALKER coefficient	
elliptic integral	
damping portions of the track oscillations	
elliptic integral	
forces of the springs in longitudinal direction (left and right side)	
forces of the springs in vertical direction (left and right side)	
shear modulus	
elliptic integral	
magnitude of the input step function	
torque of the power train	
torque of the motor	
normal force	
normal forces (left and right side)	
flexibilities of the track for the track oscillations	
main radii of curvature	
main radii of the two contact bodies in longitudinal direction	
main radii of the two contact bodies in horizontal direction	
tangential contact force	
tangential contact forces (left and right side)	
linear part of the tangential contact force T_ξ	

coefficient at the calculation of the tangential contact force T_{ξ}
abbreviation at the calculation of the semimajor axis a
abbreviation for the calculation of the penetration δ
normal force damping portions of the track oscillations
stochastic value for the longitudinal track displacement
penetration
friction coefficient
maximum friction coefficient
friction coefficient for $ \nu_{\xi} \to \infty$
Poisson's ratio
longitudinal slip
angular frequencies of the track oscillations
motor inertia
rotational inertia of the wheelset versus the wheel angle
motor angle
wheel angle

with the indices

1	left side
r	right side
x	longitudinal direction
y	lateral direction
z	vertical direction
ξ	tangential
М	motor, i.e., electric drive
Ml	power train
R	rail
W	wheel(set)