Technische Universität München Lehrstuhl für Statik

Absicherung der virtuellen Prozesskette für Folgeoperationen in der Umformtechnik

Michael Fleischer

Vollständiger Abdruck der von der Fakultät für Bauingenieur- und Vermessungswesen der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:		UnivProf. Dr. rer. nat. E. Rank
Prüfer der Dissertation:	1.	UnivProf. DrIng. KU. Bletzinger
	2.	UnivProf. DrIng. K. Schweizerhof, Universität Karlsruhe (TH)
	3.	UnivProf. DrIng. habil. M. R. Bischoff,

Universität Stuttgart

Die Dissertation wurde am 26.11.2008 bei der Technischen Universität München eingereicht und durch die Fakultät für Bauingenieur- und Vermessungswesen am 20.07.2009 angenommen.

Schriftenreihe des Lehrstuhls für Statik TU München

Band 12

Michael Fleischer

Absicherung der virtuellen Prozesskette für Folgeoperationen in der Umformtechnik

Shaker Verlag Aachen 2009

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: München, Techn. Univ., Diss., 2009

Copyright Shaker Verlag 2009 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-8398-8 ISSN 1860-1022

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit bei der Fa. BMW AG im Bereich Werkzeug- und Anlagenbau / Prozessgestaltung, Simulation, Entwicklung CAE am Standort München in den Jahren 2005 bis 2009.

Herrn Univ.-Prof. Dr.-Ing. Kai-Uwe Bletzinger, Inhaber des Lehrstuhls für Statik der Technischen Universität München, gilt mein besonderer Dank für die Unterstützung und Betreuung der Arbeit, die fachlichen Anregungen und die Übernahme des Hauptberichtes.

Herrn Univ.-Prof. Dr.-Ing. Karl Schweizerhof und Herrn Univ.-Prof. Dr.-Ing. habil. Manfred Bischoff gilt mein Dank für das Interesse an meiner Arbeit, die zahlreichen Anregungen und konstruktiven Kritiken und die Übernahme des Koreferates.

Den Kollegen des Bereichs Simulation Blechumformung an allen Standorten der BMW AG, aber besonders im Forschungs- und Innovationszentrum der BMW AG in München, danke ich für das Interesse und die konstruktive Zusammenarbeit. Ihre Anregungen und wertvollen Erfahrungen waren für mich bei der Anfertigung der Arbeit eine große Hilfe. Mein besonderer Dank für die Betreuung seitens der BMW AG gilt Herrn Dr.-Ing. Marcus Wagner und Herrn Dr.-Ing. Martin Hahn.

Den Kollegen des Umformtechnikums der BMW AG, und besonders Herrn Boris Bevc, danke ich für die Unterstützung bei der Durchführung und Bewertung der Verifikationsversuche. Für die Unterstützung bei der Durchführung der Versuche an den Serienbauteilen danke ich den Kollegen des Werkzeugbaus der BMW AG in München.

Ich danke allen Freunden und Bekannten die mich auf diesem Weg begleitet und unterstützt haben.

Besonders danke ich meiner Familie für ihre Unterstützung und das Ermöglichen meiner akademischen Ausbildung.

Kurzfassung

Das Umformverhalten einer Blechplatine bei der Herstellung der Einzelbauteile einer Automobilkarosserie wird in der Engineeringphase, also vor der Werkzeugfertigung, mit Hilfe von Finite-Element-Simulationssystemen beurteilt. Die Berechnung der ersten Umformung - Karosseriebauteilziehen -, die anschließende Abbildung des Vollbeschnittes durch das Löschen der entsprechenden Elemente und die Berechnung des danach auftretenden Bauteilaufsprungverhaltens mit linearen Schalenelementen sowie die Beurteilung des Versagens und der Faltenbildung sind Stand der Technik.

Die Abbildung des inneren Spannungszustands im Material während und am Ende der Umformung ist dabei der Ausgangszustand für die Aufsprungberechnung.

Die in dieser Arbeit behandelte realitätsnahe simulative Vorhersage des Aufsprungverhaltens der Blecheinzelbauteile nach der Umformsimulation ermöglicht eine geometrische Kompensation des Aufsprungverhaltens auf Basis der Simulation durch die Veränderung der CAD-Wirkflächen der Umformwerkzeuge in der Simulation, die in den realen Umformwerkzeugen umgesetzt wird.

Dadurch werden die Werkzeugwirkflächen so geformt, dass die Bauteile während der Umformung überbogen werden und beim Aufsprung in die Soll-Geometrie zurückfedern. Dabei gilt, je realitätsnäher die Aufsprungsimulation der Bauteile ist und somit auch deren Kompensation, desto geringer fällt der Aufwand bei der Werkzeugeinarbeit aus, um die Bauteile in die Soll-Geometrie zu bringen.

Da Blechbauteile nach dem Karosseriebauteilziehen in der Regel in weiteren Operationen - Folgeoperationen - bearbeitet werden, bis sie die Endgeometrie besitzen, wird somit auch der innere Spannungszustand bei jeder Folgeoperation verändert, und deshalb auch das Aufsprungverhalten des Fertigteils. Hinzu kommt, dass durch die immer komplexer werdenden Geometrien mehr und mehr Umforminhalte in die Folgeoperationen verlagert werden.

Entscheidend für die Karosseriefertigung ist die reale Bauteilgeometrie des Fertigteils. Um das Aufsprungverhalten der Fertigteile nach der Herstellung korrekt vorherzusagen, müssen also auch alle Folgeoperationen im Simulationssystem abgebildet werden. Dabei ist darauf zu achten, dass der Spannungszustand im Material korrekt bis zur letzten Folgeoperation abgebildet und übertragen wird, da dieser die Grundlage für die Aufsprungberechnung des Fertigteils ist.

Abstract

The formability behaviour of a blank during the production of single automotive steelbody-part is evaluated in the engineering phase - before the forming tools are manufactured - by means of finite-element-simulation systems. The computation of the first forming step - drawing -, the subsequent reproduction of the trimming by deleting the corresponding elements and the following springback-behaviour of the part, as well as the evaluation of cracks and wrinkles is state of the art.

The reproduction of the inner stress-state in the material, during and at the end of the forming-process, is the initial state for the springback computation.

The realistic simulative prediction of the springback-behaviour of the steel-body-parts after a forming-simulation, enables a geometric springback-compensation, based on simulation, by modifying the effective CAD-surfaces of the forming tools in the simulation; this modification is transferred to the real forming-tools. So, the effective tool-surfaces are formed in a way, that the parts are over-bent during the forming with the goal the parts spring back into the target-geometry.

Normally, automotive steel-body-parts are tooled in subsequent operations - follow-on operations -, until they have got their final geometry, the inner stress-state is modified in every follow-on operation, and consequently the springback-behaviour, too. Additionally, the forming-contents are more and more transferred into the follow-on operations, due to geometries with increasing complexity.

Decisive for the production of an automotive steel-body is the real geometry of a finished part. For a correct computation of the springback-behaviour of the finished parts after production, all follow-on operations have to be represented in the simulation-system. In this process, it is important that the stress-state in the material is transferred and represented correctly also into the last follow-on operation, because this is the basis for the spring-back computation of the finished steel-bodypart.

Inhaltsverzeichnis

1	Einl	eitung			1		
	1.1	1 Ausgangssituation			3		
	1.2	Literat	urübersio	ht	7		
		1.2.1	Oberfläd	chenbegutachtung	7		
		1.2.2	Einzelbl	echbauteile, Bördeln und Baugruppen	8		
		1.2.3	Aufspru	ngkompensation der Umformwerkzeuge	11		
		1.2.4	Versuch	sbauteile zur Untersuchung des Aufsprungs	11		
		1.2.5	Material	modelle und Werkstoffparameter	14		
		1.2.6	Finite E	lemente	15		
	1.3	Aufgal	benstellu	ng	17		
2	Um	formted	chnische	Grundlagen	21		
	2.1	Verfah	iren der E	Blechumformung	21		
	2.2	Karos	seriewerk	stoffe	22		
	2.3	Blechteilefertigung in der Automobilindustrie					
		2.3.1	Flächen	beschreibung der Bauteile und Werkzeugfertigung	24		
		2.3.2	Folgeop	erationen in der Herstellung von Einzelbauteilen	25		
		2.3.3	Operatio	onen in der Herstellung von Baugruppen	26		
		2.3.4	Praxisre	elevante Geometrien in Umformwerkzeugen	27		
3	FEN	I-Bered	hnungs	grundlagen	29		
	3.1	Kontin	uumsme	chanische Beschreibung	30		
		3.1.1	Nichtline	earitäten	30		
		3.1.2	Grundgl	eichungen der Kontinuumsmechanik	31		
			3.1.2.1	Bewegung und Deformation	31		
			3.1.2.2	Dehnung und Spannung	33		
			3.1.2.3	Bilanzgleichungen	34		
			3.1.2.4	Prinzip der virtuellen Verschiebungen und virtuellen			
					35		
			3.1.2.5	Kontaktmodellierung	37		
			3.1.2.6	Linearisierung und räumliche Diskretisierung	39		

3.2	2 Finite Elemente und Element-Tangentensteifigkeitsmatrizen		
	3.2.1	Isoparametrisches Konzept	40
	3.2.2	Schwache Form der Impulsbilanz	41
	3.2.3	Elementkoordinaten	42
	3.2.4	Materialbeschreibung	44
	3.2.5	Formulierung der Element-Tangentensteifigkeitsmatrix	44
	3.2.6	Tangentensteifigkeitsmatrizen für implizite und explizite Lösungs-	
		verfahren	45
3.3	Gleich	ungslösung	47
3.4	Angew	vandte Finite Elemente	48
	3.4.1	Kontinuumselemente	49
	3.4.2	Schalenelemente	49
		3.4.2.1 Künstliche Versteifung bei Finiten Schalenelementen	50
		3.4.2.2 Numerische Berechnung der Spannungen	51
		3.4.2.3 Konvergenzverhalten von Berechnungsergebnissen	51
		3.4.2.4 Schalenelemente in kommerziellen FE-Programmen	53
3.5	Materi	almodellierung	55
	3.5.1	Elasto-Plastizität	55
	3.5.2	Fließkurven und Extrapolation	56
	3.5.3	Materialmodelle in kommerziellen FE-Programmen	57
3.6	Zeit-In	tegrationsverfahren	60
	3.6.1	Lösung von Bewegungsgleichungen zeitabhängiger Probleme	61
	3.6.2	Dynamisch explizite Zeit-Integration	61
		3.6.2.1 Zeitschrittweite im expliziten Differenzenverfahren	64
		3.6.2.2 Betrachtung statischer Systeme mit der dynamisch ex-	
		pliziten Zeit-Integration	65
	3.6.3	Implizite Zeit-Integration	65
		3.6.3.1 Zeitschrittweite bei der impliziten Zeit-Integration	67
	3.6.4	Anwendung der Zeit-Integrationsverfahren im Bereich der Ble-	
		chumformung	68
3.7	Stabili	tät	69
	3.7.1	Physikalische Stabilität des Modells	69
	3.7.2	Stabilität des Materialmodells	70
	3.7.3	Numerische Stabilität des Zeit-Integrationsverfahrens	71
3.8	Werkz	eugmodellierung	73
	3.8.1	Werkzeugidealisierung	73
	3.8.2		73
	3.8.3	Abbildung der Ziehsicken	74

4	Gru	Grundlegende Untersuchung und Simulation einfacher Folgeoperatio-						
	nen				77			
	4.1	Grenz	en der Ab	bildungsfähigkeit von Finiten Elementen	79			
		4.1.1	Aufbau	des Simulationsmodells	79			
		4.1.2	Praxisre	elevante Geometrien	80			
		4.1.3	Simulati	onsparameter und geometrische Diskretisierung	81			
		4.1.4	Auswert	egrößen	82			
		4.1.5	Simulati	onsergebnisse und Interpretation	83			
			4.1.5.1	Geometrischer Bereich des Abkantens	85			
			4.1.5.2	Geometrischer Bereich des Bördelns	91			
			4.1.5.3	Spannungsverlauf über Blechdicke	92			
			4.1.5.4	Aufsprungverhalten der verformten Ringe	96			
		4.1.6	Schluss	folgerungen	97			
	4.2	Verifik	ation der	FEM-Berechnung mit rotatorischem Abkanten	100			
		4.2.1	Versuch	saufbau und Funktionsprinzip	100			
		4.2.2	Versuch	sproben und Versuchswerkstoffe	101			
4.2.3 Simulationsergebnisse u				onsergebnisse und Parameteruntersuchung	102			
			4.2.3.1	Werkzeugdiskretisierung und geometrische Ausrich-				
				tung der Schalenelemente	102			
			4.2.3.2	Einfluss der Werkstoffdaten in der Simulation	106			
			4.2.3.3	Einfluss der Werkzeuggeometrie	106			
		4.2.4	Verifikat	ionsversuche und simulative Überprüfung	107			
		4.2.5	Schluss	folgerungen	109			
	4.3	Verifik	ation der	FEM-Berechnung mit translatorischem Abkanten	111			
		4.3.1	Versuch	saufbau und Funktionsprinzip	111			
		4.3.2	Simulati	onsergebnisse und Parameteruntersuchung	112			
			4.3.2.1	Einfluss der Stempelgeschwindigkeit bei expliziter Si-				
				mulation	115			
			4.3.2.2	Werkzeugdiskretisierung und geometrische Ausrich-				
				tung der Schalenelemente	116			
			4.3.2.3	Matrizenradius und Integrationspunkte	118			
			4.3.2.4	Verhalten der Schalenelemente im expliziten Simula-				
			4005	tionsmodell im zu untersuchenden Parameterraum .	119			
			4.3.2.5	Prozessparameter - Niederhaltekraft und Reibung	124			
			4.3.2.6	Einfluss der Extrapolationsmethode der Fließkurve	126			
			4.3.2.7	Einfluss der Vordehnungen auf den Aufsprungwinkel	127			

			4.3.2.8	Abhängigkeit des Aufsprungverhaltens vom Berech-	
				nungsvertanren und des gewählten Zeitschritts im Si-	
					128
			4.3.2.9	Schlusstolgerungen aus Simulationsuntersuchung	130
		4.3.3	Verifikat	ionsversuche und simulative Uberprüfung	132
			4.3.3.1	Versuchswerkstoffe und Vordehnungszustände	132
			4.3.3.2	Werkzeugelastizität im Versuchswerkzeug	133
			4.3.3.3	Untersuchung des Reibungseinflusses auf den Auf- sprungwinkel	134
			4.3.3.4	Aufsprungergebnisse des Werkstoffs DX54D	135
			4.3.3.5	Aufsprungergebnisse des Werkstoffs TWIP	136
			4.3.3.6	Schlussfolgerungen aus Abgleich Realversuch zu Si-	
				mulation	138
	4.4	Zusan	nmenfass	ung der Verifikationsversuche	139
5	Proz	zessmo	dellieru	ng und Anwendung der Methodik in der Praxis	143
	5.1	Prozes	ssmodelli	erung für Folgeoperationen	144
		5.1.1	Aufbau i	mehrstufiger Umformprozesse in einer Pressenlinie	145
		5.1.2	Modella	ufbau im Simulationssystem	146
		5.1.3	Transfer	der realen Umformvorgänge in das Simulationssystem	146
			5.1.3.1	Direkte Übertragung des Methodenplans in das Simu-	
				lationssystem	146
			5.1.3.2	Reduzierung des Methodenplans zur effizienten Ab-	
				bildung im Simulationssystem	147
		5.1.4	Simulati	onsmodellierung mit LS-DYNA	149
			5.1.4.1	CAD- und Modellebene	150
			5.1.4.2	Parameterebene	151
		5.1.5	Modellie	erung der Ziehsicken	152
		5.1.6	Modellie	erung der Niederhalter	153
	5.2	Messk	onzept u	nd Bauteilvermessung	154
	5.3	Prozes	ssanwend	dung am Bauteil 1	155
		5.3.1	Analyse	der Umformprozesse im Methodenplan	155
		5.3.2	Transfer	auf idealisiertes Simulationsmodell	155
		5.3.3	Verbess	erung der Methode zur Optimierung der Herstellbarkeit	157
			5.3.3.1	Oberflächendefekte und Versagensstellen	157
			5.3.3.2	Optimierung der Ziehanlage für das Serienwerkzeug	160
		5.3.4	Aufspru	ngverhalten der Realteile und Simulationsergebnisse	161
			5.3.4.1	Aufsprungverhalten der Stationsteile	161

			5.3.4.2	Aufsprungverhalten in der letzten Arbeitsfolge	163
			5.3.4.3	Einfluss der Simulationsmethode auf das Aufsprung-	
				verhalten	165
	5.4	Prozes	ssanwend	lung am Bauteil 2	168
		5.4.1	Analyse	der Umformprozesse im Methodenplan	168
		5.4.2	Transfer	auf idealisiertes Simulationsmodell	169
		5.4.3	Aufsprur	ngverhalten der Realteile und Simulationsergebnisse .	170
	5.5	Zusam	nmenfass	ung	173
6	Sim	ulation	von Füg	eprozessen und Baugruppen	175
	6.1	Herste	llungspro	zess der einzelnen Bauteile der Baugruppe	175
	6.2	Füges	imulation	der Einzelteile zu einer Baugruppe	177
		6.2.1	Modellie	rung des Bördel-Prozesses im Simulationssystem	177
		6.2.2	Aussage	möglichkeiten der Bördel-Simulation	178
	6.3	Aufspr	ungsimul	ation der Baugruppe	182
		6.3.1	Aufsprur	ngsimulation nach dem Fügeprozess	182
		6.3.2	Potentia	labschätzung und Grenzen der Simulation für den prak-	
			tischen I	Einsatz im Werkzeug- und Anlagenbau	183
7	Zus	ammen	ifassung	und Ausblick	187
8	Anh	ang			195
	8.1	Versuo	chswerkst	offe und deren mechanische Kennwerte	195
	8.2	Ergeb	nisse zu I	DX54D	197
		8.2.1	Einfluss	des Ziehspaltes auf den Aufsprungwinkel	197
		8.2.2	Aufsprur	ngwinkel - Simulation und Versuch	197
	8.3	Ergeb	nisse zu T	ΓWIP	203
Lit	eratu	ırverze	ichnis		207
At	bildu	ungsve	rzeichnis	3	219
Та	belle	nverzei	ichnis		227

Verzeichnis der Symbole und Abkürzungen

Benutztes Einheitensystem für die FEM-Berechnungen:				
Größe	Allgemeines Symbol	Einheit		
Masse	m	ton		
Länge	l	mm		
Zeit	t	S		
Dichte	ρ	ton/mm ³		
Kraft	F	Ν		
Energie	E	N⋅mm		
Spannung	σ, τ	N/mm ²		
Elastizitätsmodul	E_0	N/mm ²		

Symbol Einheit Bedeutung

Allgemeine geometrische Größen:

l, b, d	mm	Länge, Breite, Dicke
x, y, z	mm	Ortskoordinaten
u, s	mm	Verschiebung, Weg
\dot{u} , \dot{s} , v	mm/s	Geschwindigkeit
\ddot{u}, \ddot{s}, a	mm/s^2	Beschleunigung

Mechanische Werkstoffgrößen:

$R_{P0.2}$	N/mm ²	Streckgrenze
$R_{P0.2M}$	N/mm^2	Mittlere Streckgrenze
R_m	N/mm^2	Zugfestigkeit
A_g	%	Gleichmaßdehnung
A_{80}	%	Bruchdehnung einer Zugprobe mit 80 mm Messlänge
k_f	N/mm^2	Fließspannung
φ		Umformgrad, wahre Dehnung
φ_1		Hauptumformgrad
φ_2		Nebenumformgrad
φ_v		Vergleichsumformgrad

Symbol Einheit Bedeutung

Mechanische Werkstoffgrößen:

ϵ		Technische Dehnung
$\dot{\epsilon}$	1/s	Dehnrate
ν		Querkontraktionszahl
c_d	mm/s	Schallgeschwindigkeit
μ		Reibungsbeiwert
R_0 , R_{45} , R_{90}		planare Anisotropiewerte in 0°, 45°
		und 90° Walzrichtung
R_S		senkrechte Anisotropie

Allgemeine Größen:

α	0	Aufsprungwinkel
l_e	mm	Elementkantenlänge
$l_{e,char}$	mm	Charakteristische Elementkantenlänge
d_{Blech}	mm	Blechdicke
d_0	mm	Anfangsblechdicke
d_{min}	mm	Minimale Blechdicke
m_K	t	Gesamtgewicht Rohkarosserie
Δt	S	Zeitintervall
Δt_{stabil}	S	Stabiler Zeitschritt
α_i , δ_i		Implizite Lösungsparameter
v_S	mm/s	Stempelgeschwindigkeit
F_N	Ν	Niederhaltekraft
$F_{N,P}$	N/mm^2	Niederhaltedruck
$F_{R,LS}$	N/mm	Rückhaltekraft Liniensicke
$\sigma_{xx,local}$	N/mm^2	Spannung in x-Richtung im lokalen
		Elementkoordinatensystem
$\sigma_{yy,local}$	N/mm^2	Spannung in y-Richtung im lokalen
		Elementkoordinatensystem
$\sigma_{M-\alpha}$	%	Standardabweichung der Messwerte des
		Aufsprungwinkels α
$\Delta \alpha_M$	%	Abweichung der Simulationsergebnisse
		zu den Messwerten
N_{G-IP}		Anzahl Gauss-Integrationspunkte
N_{El,R_M}		Anzahl Elemente im Matrizenradius
$s_{Null-Faser}$	%	Verschiebung der Spannungs-Null-Faser

Symbol Einheit Bedeutung

Parameter für Werkstoffmodelle:

M	Parameter zur Fließortbeschreibung bei Barlat'89
n	Verfestigungsexponent
$n_l, n_s, n_v, n_h, n_{h1}$	Werkstoffparameter für Fließkurvenextrapolation
А, В	Werkstoffparameter für Fließkurvenextrapolation

Geometrische Größen bei Versuchsaufbau und Werkzeugen:

R_{NB}	mm	Niederhaltebackenradius
S_{NB}	mm	Verschiebung Niederhaltebacke
S_{RP}	mm	Position Rotationsachse
S_{BW}	mm	Verschiebung Biegewange
R_M	mm	Matrizenradius
R_S	mm	Stempelradius
S	mm	Stempelhubweite
$S_{R_M-R_S}$	mm	Abstand der umformenden Radienkanten
ZS_{ges}	mm	Gesamtziehspalt
ZS	mm	Ziehspaltzugabe
ΔZS	mm	Ziehspaltaufweitung
ΔS	mm	Elementkantenverschiebung
$R_{I,RZ}$	mm	Innenradius bei Ringzugversuch
$R_{M,RZ}$	mm	Mittenradius bei Ringzugversuch
$R_{A,RZ}$	mm	Außenradius bei Ringzugversuch
$R_{S,E}$	mm	Einlaufradius der Sicke
$R_{S,S}$	mm	Stabradius der Sicke
$R_{S,A}$	mm	Auslaufradius der Sicke

Matrizen und Vektoren:

Matrizen und Vektoren werden generell fett geschrieben, oder in der Einsteinschen Summenkonvention dargestellt.

м	Massenmatrix
C_D	Dämpfungsmatrix
$\mathbf{K}_{\mathbf{E}}$	Elementsteifigkeitsmatrix
К	Gesamtsteifigkeitsmatrix
х	Ortsvektor im System in Initialkonfiguration
x	Ortsvektor im System in Momentankonfiguration
е	Einheitsvektor
${f I}$, δ_{ij}	Einheitsmatrix und Kronecker Delta
\mathbf{u}_I	Vektor der Knoten-Verschiebungen am Knoten I
u	Vektor der Verschiebungen
ů, v	Vektor der Geschwindigkeit
ü, a	Vektor der Beschleunigung
$\mathbf{f}^{\mathbf{ext}}$	Vektor der äußeren Lasten
$\mathbf{f}^{\mathbf{int}}$	Vektor der inneren Element-Kräfte
$\mathbf{f}^{\mathbf{kon}}$	Vektor der Kontakt-Kräfte
F	Deformationsgradient (Jacobi-Matrix)
J	Determinante des Deformationsgradienten
$\mathbf{P^{int}}$, $\mathbf{P^{ext}}$	Innere und äußere virtuelle Leistung
$\mathbf{W^{int}}$, $\mathbf{W^{ext}}$	Innere und äußere virtuelle Arbeit
E, ϵ	Green-Lagrangescher Verzerrungstensor, Dehnungstensor
$\mathbf{C}(\boldsymbol{\epsilon})$	Allg. nichtlineare Materialmatrix als Funktion des Dehnungstensors
σ	Tensor der Cauchyspannungen
\mathbf{S}	2. Piola-Kirchhoffscher Spannungstensor
Р	Tensor der Nominalspannungen
В	Verschiebungs-Verzerrungs-Transformationsmatrix
Ν	Matrix der Ansatzfunktionen eines Elements
Ω	Gebiet mit der Berandung Γ
Г	Berandung des Gebietes Ω

Abkürzungen der Finiten Elemente:

ABAQUS [1]:

- S4R reduziert integriertes lineares vierseitiges Schalenelement
- CPE4R reduziert integriertes 2D-Kontinuumselement mit ebener Dehnung

LS-DYNA [83] - Schalenelemente:

- E1 Hughes-Liu
- E2 Belytschko-Tsay
- E6 S/R (selektiv reduziert integriert) Hughes-Liu
- E7 S/R co-rotational (lokales Elementkoordinatensystem) Hughes-Liu
- E8 Belytschko-Leviathan
- E10 Belytschko-Wong-Chiang
- E11 Fast (co-rotational) Hughes-Liu
- E16 Bathe-Dvorkin (voll integriert)
- E25 Belytschko-Tsay mit Dehnung in Blechdickenrichtung
- E26 Belytschko-Tsay (voll integriert) mit Dehnung in Blechdickenrichtung

Abkürzuna	Bedeutung		
AHU	Außenhochdruckumformen		
AFO	Arbeitsfolge		
AWP-F	Auswertepunkt - Kraft		
AWP-RS	Auswertepunkt - Radien und Spannung		
BMW-GS	BMW Group Standard		
CAD	Computer Aided Design		
CAE	Computer Aided Engineering		
DIN	Deutsches Institut für Normung e.V.		
EN	Europäische Norm		
FEM	Finite Elemente Methode		
FEA	Finite Elemente Analyse		
GFD	Grenzformänderungsdiagramm		
GFK	Grenzformänderungskurve		
G-IP	Gauss-Integrationspunkt		
IHU	Innenhochdruckumformen		
IP	Integrationspunkt		
ISO	International Organisation for Standardisation		
MAT36	LS-DYNA Materialmodell Nr.36 - Fließortbeschreibung Barlat'89 [83]		
MPP	Massively Parallel Processing		
SMP	Symmetrical Multi Processing		
VDI	Verein Deutscher Ingenieure e.V.		