TECHNISCHE UNIVERSITÄT DRESDEN

Beiträge zur Doppler-Global-Velozimetrie mit Laserfrequenzmodulation – Präzise Messung von Geschwindigkeitsfeldern in turbulenten Strömungen mit hoher Zeitauflösung –

Dipl.-Ing. Andreas Fischer

von der Fakultät Elektrotechnik und Informationstechnik der Technischen Universität Dresden

zur Erlangung des akademischen Grades eines

Doktoringenieurs

(Dr.-Ing.)

genehmigte Dissertation

Vorsitzender: Prof. Dr.-Ing. habil. G. Gerlach Gutachter: Prof. Dr.-Ing. habil. J. Czarske Tag der Einreichung: 02.04.2009 Prof. Dr.-Ing. W. Jüptner Tag der Verteidigung: 26.06.2009

Dresdner Berichte zur Messsystemtechnik

Band 2

Andreas Fischer

Beiträge zur Doppler-Global-Velozimetrie mit Laserfrequenzmodulation

- Präzise Messung von Geschwindigkeitsfeldern in turbulenten Strömungen mit hoher Zeitauflösung -

Shaker Verlag Aachen 2009

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Dresden, Techn. Univ., Diss., 2009

Copyright Shaker Verlag 2009 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-8370-4 ISSN 1866-5519

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de Für meine Eltern

"What's the go o' that?"

häufig gestellte Frage von James Clerk Maxwell im Alter von 3 Jahren

Danksagung

Die vorliegende Arbeit enstand an der Professur für Mess- und Prüftechnik der Technischen Universität Dresden. Mein besonderer Dank gilt dem Lehrstuhlinhaber Herrn Prof. Dr.-Ing. habil. J. Czarske für die Initiierung und generelle Unterstützung dieser Arbeit sowie die Eröffnung von ausgezeichneten Möglichkeiten zum wissenschaftlichen Gedankenaustausch auch über die Landesgrenzen hinweg. Ebenso bedanke ich mich bei Herrn Prof. Dr.-Ing. W. Jüptner vom Bremer Institut für angewandte Strahltechnik für die bereitwillige Übernahme des Korreferats.

Meinem Kollegen Herrn Dr. rer. nat. L. Büttner möchte ich nicht minder danken. Er stand mir in zahlreichen anregenden Diskussion ganz wesentlich hilfreich zur Seite.

Die in Dresden durchgeführten Arbeiten waren Teil eines gemeinsamen Projektes mit den Herren Dr. rer. nat. H. Müller und Dipl.-Ing. M. Eggert von der Physikalisch-Technischen Bundesanstalt in Braunschweig. Ihnen sei an dieser Stelle für die gute Zusammenarbeit und ihre wertvollen Beiträge zum gemeinsamen Forschungsvorhaben gedankt.

Die lebhaften und fruchtbaren Diskussionen mit Herrn Dr. J. Meyers vom NASA Langley Research Center, Herrn Dr. T. Charrett von der Cranfield University und Herrn Dr. A. Landolt von der Eidgenössischen Technischen Hochschule Zürich, speziell während des "14th International Symposium on Applications of Laser Techniques to Fluid Mechanics" in Lissabon, waren eine wichtige fachliche aber auch persönliche Bereicherung. Sie gewährten mir viele Einblicke in ihre zurückliegenden und gegenwärtigen Forschungsanstrengungen zu den Doppler-Global-Velozimetrie-Verfahren. Dafür danke ich Ihnen sehr. Zudem bin ich den Herren Dr. C. Willert und Dr. rer. nat. G. Stockhausen vom Deutschen Zentrum für Luft- und Raumfahrt in Köln sowie Herrn Dr.-Ing. T. Seidel von der Ingenieurgesellschaft Auto und Verkehr GmbH in Chemnitz zu Dank verpflichtet. Sie ließen mich ebenfalls an Ihren reichhaltigen Erfahrungen zu den Entwicklungen und Anwendungen der Doppler-Global-Velozimetrie teilhaben, wodurch sich aufregende Impulse für die Arbeit ergaben.

Herrn Prof. Dr.-Ing. R. Grundmann vom Institut für Luft- und Raumfahrt an der Technischen Universität Dresden danke ich für das mehrmals in Anspruch genommene Angebot, das aufgebaute Messsystem in einem Windkanal zu erproben. Die tatkräftige Unterstützung durch Herrn Dipl.-Ing. J. Frey bei den Messungen im Windkanal sei zudem dankend hervorgehoben.

Herr Dr. rer. nat. M. Brede von der Universität Rostock und mein Arbeitskollege Herrn M. Sc. K. Shirai haben mir bei der Einarbeitung in grundlegende Aspekte der Strömungsmechanik hilfreich zur Seite gestanden, wofür ich Ihnen danke. Ebenso danke ich meinem ehemaligen Kollegen Herrn Dipl.-Ing. Carsten Claucke für die Begleitung der LDA-Messungen.

Allen Kollegen an der Professur für Mess- und Prüftechnik möchte ich meinen Dank für die angenehme Arbeitsatmosphäre aussprechen. Besonders den Herren Dr.-Ing. T. Pfister, M. Sc. K. Shirai und Dipl. Phys. A. Voigt sei für die vielen lebendigen und inspirierenden Diskussionen gedankt.

Außerdem haben mehrere Studierende im Rahmen von Studien-, Diplomarbeiten und Hilfstätigkeiten zu dem Forschungsvorhaben beigetragen. Hierfür danke ich Arndt Bretschneider, Daniel Haufe, Nora Heinig, Jörg König, Martin Kreißig, Stephan Mastalerz, Florian Runge, Dennis Schobert, Steffen Schulze, Robert Schwerz und René Zapf.

Der Deutschen Forschungsgemeinschaft sei ausdrücklich für die sechsjährige Finanzierung des Verbundprojekts "Einsatz neuartiger Doppler-Global-Velocimeter (DGV) zur Analyse komplexer Strömungen – FM-DGV-Sensorentwicklung und -anwendung" mit den Förderkennzeichen CZ 55/16 und MU 1252/2 im Rahmen des Schwerpunktprogramms 1147 "Bildgebende Messverfahren für die Strömungsanalyse" gedankt.

Schließlich möchte ich meiner lieben Familie für die erhaltene Unterstützung abseits des Arbeitsplatzes herzlich danken.

Kurzfassung

Für die Untersuchung komplexer Strömungsvorgänge, wie zum Beispiel die Umströmung eines Zylinderstumpfes, werden zeitaufgelöste Geschwindigkeitsfeldmessungen benötigt. Ein hierfür geeignetes berührungsloses Messverfahren ist die Doppler-Global-Velozimetrie (DGV). Dabei wird die zu untersuchende Strömung, welche Streuteilchen enthält, mittels Laserlicht flächig beleuchtet und durch eine molekulare Absorptionszelle hindurch auf eine Kamera abgebildet. Die Absorption in der Zelle hängt von der Lichtfrequenz ab, weswegen sich die Doppler-Frequenzverschiebung des Streulichts als Intensitätsänderung flächenhaft messen lässt. Da eine Querempfindlichkeit zur Streulichtintensität besteht, muss zwecks Korrektur letztere mit einer zweiten Kamera gemessen werden. Dadurch können Bildausrichtungs- und Strahlteilungsfehler auftreten. Neuere DGV-Verfahren, wie die FM-DGV, benötigen hingegen nur eine Kamera. Sie basieren auf einer Laserfrequenzmodulation und der Auswertung sequentiell aufgenommener Bilder. Das Ziel dieser Arbeit ist der Aufbau und die erstmalige, grundlegende Charakterisierung eines FM-DGV-Messsystems mit hoher Zeitauflösung zur Untersuchung instationärer, turbulenter Strömungen.

Im Ergebnis wurde ein Messsystem bestehend aus einem DFB-Diodenlaser der Wellenlänge 852 nm als frequenzmodulierbare Lichtquelle, mit Cäsiumgas gefüllten Absorptionszellen zur Frequenz-Intensitäts-Konversion und einem fasergekoppelten Detektorarray mit 25 Lawinenphotodioden zur Lichtdetektion realisiert. Der Messbereich beträgt $\pm 260 \text{ m/s}$. Im Vergleich zu bisherigen DGV-Verfahren gelang eine signifikante Steigerung der Messrate von einigen 10 Hz auf 100 kHz. Damit ist das FM-DGV-Messsystem für zeitlich hochaufgelöste Geschwindigkeitsfeldmessungen prädestiniert.

Zur Abschätzung und Bewertung der minimal erreichbaren Messunsicherheit erfolgt erstmals eine Berechnung der Cramér-Rao-Schranke für sämtliche DGV-Verfahren mit und ohne Laserfrequenzmodulation. Daraus folgt, dass sich mit allen Verfahren in etwa gleiche Unsicherheiten erreichen lassen, wenn man allein das bei der Photodetektion auftretende Rauschen wie beispielsweise thermisches Rauschen und Schrotrauschen berücksichtigt. Es wird gezeigt, dass dieses Rauschen bei der Erfassung von Geschwindigkeitsänderungen gegenwärtig die Messunsicherheit limitiert. Ausgehend von den Parametern des aufgebauten Messsystems und der typ. Streulichtleistung 3 nW beträgt die abgeschätzte Standardunsicherheit für eine Zeitauflösung von 16 ms ungefähr 0,05 m/s. Die Abhängigkeit der Messunsicherheit von der Zeitauflösung und der Streulichtleistung wird eingehend untersucht. Bei absoluten Geschwindigkeitsmessungen dominieren meist Messabweichungen von $\pm 0.2 \,\mathrm{m/s}$ aufgrund temperaturbedingter Schwankungen des Absorptionsverhaltens der Zelle. Zusätzlich können Streulichtfluktuationen die Messung stören, wobei die resultierende Unsicherheit mit steigender Strömungsgeschwindigkeit, -turbulenz und Ortsauflösung zunimmt. Es wird jedoch gezeigt, dass sich dieser Störeinfluss durch eine Vergrößerung der Modulationsfrequenz signifikant verringern lässt. Für die gewählte Modulationsfrequenz von 100 kHz ist er bei Strömungsgeschwindigkeiten unter 60 m/s vernachlässigbar.

Als Anwendungsbeispiele werden zeit- und ortsaufgelöste Messungen in einer instationären Düsenströmung und der Kármán'schen Wirbelstraße präsentiert und durch Vergleichsmessungen mit einer Hitzdrahtsonde bestätigt. Die hohe Zeitauflösung des optimierten FM-DGV-Messsystems von 10 μs und die Nutzung des entwickelten Detektorarrays gestatten dabei erstmals die simultane Aufnahme von Turbulenzspektren an 25 Punkten. Damit eröffnen sich neue Perspektiven für die Turbulenz- und Korrelationsanalyse instationärer, turbulenter Strömungen.

Abstract

Temporally resolved velocity field measurements are necessary for investigating complex flows such as the wake of a truncated cylinder. Doppler global velocimetry (DGV) is an optical measurement technique providing this capability. Thereby, a flow seeded with particles is illuminated by a laser light sheet and imaged through a molecular absorption cell onto a camera. Since the light transmission through the absorption cell depends on the light frequency, the Doppler shift frequencies can be measured in a plane as intensity changes. In order to correct the cross sensitivity regarding the scattered light intensity, a second camera is required for measuring the intensity distribution of the scattered light. However, this correction can cause image misalignment and beam splitting errors. These errors do not occur at novel DGV techniques such as FM-DGV, because they only need a single camera. This is possible by modulating the laser frequency and evaluating sequentially captured images. The aim of this work is to create and to characterise fundamentally an FM-DGV measurement system with high temporal resolution for investigating nonstationary, turbulent flows.

The realised FM-DGV system consists of a DFB laser with a wavelength of 852 nm as light source, absorption cells filled with caesium gas for frequency to intensity conversion and a fibre-coupled detector array with 25 avalanche photodiodes for light detection. The measurement range amounts to ± 260 m/s. Compared with previous DGV systems, the measurement rate was significantly increased from several 10 Hz to 100 kHz. Hence, the developed measurement system is especially useful for velocity field measurements with high temporal resolution.

In order to estimate and to evaluate the minimum achievable measurement uncertainty, the Cramér-Rao lower bound was calculated for all DGV techniques with and without laser frequency modulation for the first time. Thus, all DGV methods achieve equal measurement uncertainties, if only noise from the photodetection such as thermal and shot noise is considered as disturbance. As a result of experimental studies, this disturbance limits the uncertainty for measuring velocity fluctuations. The estimated velocity standard uncertainty for a temporal resolution of 16 ms amounts to about 0.05 m/s considering the parameters of the developed measurement system and a typical scattered light power of $3 \,\mathrm{nW}$. It is further shown that the measurement uncertainty decreases with increasing scattered light power and decreasing temporal resolution. Measuring absolute velocity values with low temporal resolution, the measurement accuracy is currently limited within $\pm 0.2 \,\mathrm{m/s}$ by temperature drifts of the absorption cell. Additional errors can result from scattered light fluctuations increasing with rising flow velocity, flow turbulence and spatial resolution. However, an investigation reveals that these disturbances are reduced significantly by increasing the modulation frequency. For the currently used modulation frequency of 100 kHz, the errors from scattered light fluctuations turned out to be negligible for flows with mean velocities lower than 60 m/s.

Finally, temporally and spatially resolved measurements of a non-stationary nozzle flow and a Kármán vortex street are presented and approved by measurements using a hot-wire anemometer. Due to the high temporal resolution of $10 \,\mu s$ and the use of the developed detector array, simultaneous measurements of turbulence spectra at 25 points are possible for the first time using DGV. This opens up new perspective for turbulence and correlation investigations in non-stationary, turbulent flows.

Inhaltsverzeichnis

Verzeichnis wichtiger Formelzeichen XV				
Akronyme XXI				
1	Einl 1.1 1.2 1.3	eitung Motivatio: Stand der Lösungsar	n und Zielstellung	1 . 1 . 1 . 4
2	Messprinzip eines Doppler-Global-Velozimeters mit sinusförmiger Laserfre-			
	que	nzmodulat	ion	6
	2.1	Der optisc	che Doppler-Effekt an einem bewegten Streuteilchen	. 6
	2.2	Konventic	onelle Doppler-Global-Velozimetrie (DGV)	. 8
		2.2.1 Me	essprinzip	. 8
		2.2.2 His	storie und technologische Entwicklung	. 9
		2.2.3 Sta	and der Technik und Fazit	. 14
	2.3	Doppler-C	lobal-Velozimetrie mit sinusförmiger Laserfrequenzmodulation (F	M-
		DGV) .		. 15
		2.3.1 Me	essprinzip	. 15
		2.3.2 His	storische Entwicklung und Stand der Technik	. 19
	0.4	2.3.3 Pe	rspektiven des Messsystems	. 20
	2.4	Weitere D	GV-Konzepte	. 21
		2.4.1 2-0	000F-FDV	. 21
		2.4.2 Z-L	ν-ΡDγ	. 22
		2.4.5 FS	R-DGV	. 25 94
		2.4.4 Zu	sammemassung	. 24
3	Min	imal erreic	hbare Messunsicherheit	28
	3.1	Festlegung	g der unbekannten Parameter	. 29
	3.2	Photonen	rauschen	. 30
		3.2.1 Cr	amér-Rao-Schranke	. 31
		3.2.2 Lie	htstreuung	. 33
		3.2.3 Ab	sorptionszelle	. 44
		3.2.4 Ve	rgleich	. 57
	3.3	Photodete	ktion	. 59

		3.3.1	Rauschverhalten der Photodetektoren	59
		3.3.2	Cramér-Rao-Schranke	74
		3.3.3	Auswahl des Photodetektors	76
		3.3.4	Vergleich	77
4	Sigr	alvera	rbeitung	81
	4.1	Signal	verarbeitung mittels harmonischer Analyse	81
	4.2	Chara	kterisierung	83
		4.2.1	Erwartungstreue	84
		4.2.2	Varianz	84
	4.3	Effizie	nz	86
5	Rea	lisierun	ng des Messsystems	90
	5.1	Lichte	rzeugung	91
	5.2	Lichte	empfang	94
	5.3	Daten	erfassung und -verarbeitung	99
	5.4	Kalibı	rierung	101
	5.5	Seedir	ng	103
6	Beit	räge z	um Messunsicherheitsbudget	104
	6.1	Übers	icht möglicher Störungen	104
		6.1.1	Lichterzeugung	105
		6.1.2	Strömung und Lichtstreuung	106
		6.1.3	Lichtempfang und Datenerfassung	108
		6.1.4	Signalverarbeitung	109
	6.2	Releva	ante Unsicherheitsquellen	110
		6.2.1	Stabilität der Transmissionskennlinie	110
		6.2.2	Unsicherheit der Lasermittenfrequenz, Rauschen bei Lichtempfang	
			und Datenerfassung	113
		6.2.3	Streulichtfluktuationen	116
	6.3	Resün	nee	120
	6.4	Eigenl	kalibrierung	122
7	Anv	vendun	gen	126
	7.1	Messu	ng am Kalibrierobjekt	127
	7.2	Statio	näre Strömungen	128
		7.2.1	Vergleich mit LDA-Messung	128
		7.2.2	Vergleich mit Geschwindigkeitsschätzung über Druck- und Tempe-	
			raturmessung	131
	7.3	Instat	ionäre Strömungen	135
		7.3.1	Auswertung im Zeitbereich	135
		7.3.2	Auswertung im Frequenzbereich	137

8	Zusa	ammenfassung und Ausblick	141	
	8.1	Ausgangspunkt der Arbeit	141	
	8.2	Forschungsergebnisse und wissenschaftlicher Fortschritt	142	
	8.3 Offene Fragen und Ausblick auf weiterführende Arbeiten $\ \ldots \ \ldots \ \ldots$			
Α	Der	Doppler-Effekt	149	
	A.1	Ausbreitung einer ebenen elektromagnetischen Welle aus Sicht eines be-		
		wegten Inertialsystems	150	
	A.2	Streuung an einem geradlinig und gleichförmig bewegten Partikel	152	
В	The	orem zur binomialen Selektion einer poissonverteilten Zufallsgröße	155	
С	Bere	echnungen zur Cramér-Rao-Schranke	157	
	C.1	Quantenrauschen der Photonen	158	
		C.1.1 Konventionelle DGV	158	
		C.1.2 DGV mit Laserfrequenzmodulation	159	
	C.2	Rauschen bei der Photodetektion	160	
		C.2.1 Konventionelle DGV	160	
		C.2.2 DGV mit Laserfrequenzmodulation	162	
D	Bere	echnung der äquivalenten Rauschbandbreite	166	
	D.1	Tiefpassfilter 1. Ordnung	166	
	D.2	Tiefpassfilter 2. Ordnung	167	
	D.3	Gleitende Mittelwertbildung	167	
Е	Am	plitudenschätzung	169	
	E.1	Rauschen bei der Photodetektion	170	
		E.1.1 Erwartungswert	170	
		E.1.2 Varianz	170	
		E.1.3 Kovarianz	171	
	E.2	Streulichtfluktuation	171	
		E.2.1 Erwartungswert	172	
		E.2.2 Varianz	173	
		E.2.3 Kovarianz	175	
F	Unsicherheit der Kalibriergeschwindigkeit 1			
	F.1	Rotierende Scheibe	177	
	F.2	Freistrahl einer Düsenströmung	178	
		~ 		
Lit	erati	ırverzeichnis	183	
Ρι	ıblika	tionen	197	
Diplom- und Studienarbeiten 2			200	
Lebenslauf 2			201	

Verzeichnis wichtiger Formelzeichen

Symbol	Bedeutung
с	Lichtgeschwindigkeit
Ca	Konzentration der Gasatome in der Absorptionszelle
C _p	Konzentration der Streuteilchen
d	Strahlteilungsfaktor
d_{path}	Weglänge des Lichts in der mit Streuteilchen versetzten Luft
e	Elementarladung
f	Frequenzvariable
f_0	Frequenz eines atomaren Übergangs
$f_{0,l}, f_{0,r}$	Frequenzen, für welche die Geraden zur Approximation der linken bzw. rechten Flanke der Transmissionskennlinie die Transmission Null liefern
$f_{0,FF'}$	Resonanz frequenz der Transition von dem angeregten Zustand F^\prime in den Grundzustand F
$f_{\rm 3dB}$	3-dB-Grenzfrequenz
f_a	Abtastfrequenz
f_c	Lasermittenfrequenz ohne Doppler-Frequenzverschiebung
f_c'	Mittenfrequenz des Lichts nach der Doppler-Frequenzverschiebung
f_h	Amplitude der Frequenzmodulation
f_m	Modulationsfrequenz
$f_{\rm mod}$	Frequenzmodulation
$f_{\rm rot}$	Rotationsfrequenz der Glasscheibe
$f_{\rm sh}$	Betrag des Frequenzsprungs bei der Frequenzmodulation
f_D	Doppler-Frequenz
f_L	Frequenz des Laserlichts vor Einwirkung der Doppler-Frequenzverschie-
	bung
g	Detektorempfindlichkeit
g_1, g_2	Empfindlichkeit eines APD-Array elements bei der Frequenz f_m bzw. $2f_m$
$g_{1,r}, g_{2,r}$	Empfindlichkeit des Referenzdetektors bei der Frequen z f_m bzw. $2f_m$
$g_{\rm r}$	Empfindlichkeit des Referenzdetektors (konventionelle DGV)
$g(\ldots)$	Formfunktion der spektralen Absorptionslinien
$g_{\tau}(\ldots)$	Formfunktion zur Beschreibung der natürlichen Absorptionslinienver- breiterung

Symbol	Bedeutung
$g_p(\ldots)$	Formfunktion zur Beschreibung der Stoßverbreiterung der Absorptions- linie
$g_D(\ldots)$	Formfunktion zur Beschreibung der Doppler-Linienverbreiterung
$g_L(\ldots)$	Formfunktion zur Beschreibung der spektralen Leistungsverteilung des
	Laserlichts
k	Abtastschritt
k_m	Anzahl der ausgewerteten Perioden des Modulationssignals
$k_{\rm s}$	Parameter zur verallgemeinerten Beschreibung des signalabhängigen Rauschens
$k_{\rm A}$	Verhältnis der Ionisierungskoeffizienten der Elektronen und Löcher
$k_{\rm B}$	Boltzmann-Konstante
l	Indizierung der Harmonischen des Detektorsignals
h	Planck-Konstante
m	Molekülmasse der absorbierenden Gasteilchen
n	Anzahl der Photonen, die auf ein Element des Detektorarrays fallen
n_1, n_2	Anzahl der Photonen, die auf ein Pixel der Messkamera bzw. Referenz- kamera fallen
$\dot{n}_{ m d}$	Elektronenrate, die dem Dunkelstrom entspricht
$n_{\rm e}$	Anzahl der durch Photonenabsorption herausgelösten Elektronen (Pho-
	toelektronen)
$n_{\rm p}$	Brechungsindex des Teilchenmediums normiert auf den Realteil des Brechungsindexes des Strömungsmediums
n_s	Anzahl der gestreuten Photonen, die auf ein Element des Detektorarrays fallen
\vec{i}	Lichteinfallsrichtung
\vec{o}	Beobachtungsrichtung
$p(\ldots)$	Wahrscheinlichkeitsdichte (kontinuierliche Verteilung) oder Wahrscheinlichkeitsfunktion (diskrete Verteilung)
p	Gasdruck in der Absorptionszelle
p_1, p_2	Sättingsdampfdruck von ein- bzw. zweiatomigen Cäsiumgas
q	Verhältnis der Amplituden der ersten und zweiten Harmonischen des Detektorsignals
$q_{\mathbf{k}}$	Differenz von q und q_r
$q_{\rm m}$	gemessenes Amplitudenverhältnis A_1/A_2 , welches die unterschiedlichen Empfindlichkeiten eines Detektors bei der ersten und zweiten Harmonischen enthält
$q_{\rm m,r}$	gemessenes Amplitudenverhältnis, welches die unterschiedlichen Empfindlichkeiten des Referenzdetektors bei der ersten und zweiten Harmo- nischen enthält
$q_{ m r}$	Verhältnis der Amplituden der ersten und zweiten Harmonischen des Referenzdetektorsignals

Symbol	Bedeutung
r	Partikelradius
r[k]	Rauschsignal
r_0	häufigster Partikelradius
$r_{\rm kal}$	Radius der Glasscheibe, bei dem kalibriert wird
s	Ausgangssignal eines Elements des Photodetektorarrays
s_1	Signal eines Bildpunkts der Messkamera
s_2	Signal eines Bildpunkts der Referenzkamera
t	Zeitvariable
v	zu messende Komponente der Strömungsgeschwindigkeit
$v_{\rm kal}$	Kalibriergeschwindigkeit
\vec{v}_P	Partikelgeschwindigkeit
\vec{x}	Signalvektor
x, y, z	Raumkoordinaten
\tilde{x}, \tilde{y}	Koordinaten des Messorts ausgehend vom Mittelpunkt des Zylinderquerschnitts
A_0	Gleichanteil des Detektorsignals
A_h	Amplituden der h -ten Harmonischen des Detektorsignals
\tilde{A}_0	Normierter Gleichanteil des Detektorsignals
\tilde{A}_h	Normierte Amplitude der h -ten Harmonischen des Detektorsignals
A_D	aktive Fläche eines Detektorarrayelements
$A_{\rm Q}$	Strömungsquerschnitt
$\operatorname{CRLB}(f'_c)$	Cramér-Rao-Schranke der Lasermittenfrequen z f_c^\prime
$\operatorname{CRLB}(\hat{v})$	Cramér-Rao-Schranke der Geschwindigkeit \hat{v}
D	Düsendurchmesser
D_c	Zylinderdurchmesser
F	verallgemeinerter Zusatzrauschfaktor
$F_{\rm A}$	Zusatzrauschfaktor bei der APD
FWK	Anzahl der Elektronen, für die der Detektor sättigt (Full-Well-Kapazität)
$F_{\hat{v}}$	relative Messabweichung der Geschwindigkeit
$F_{\frac{\partial v}{\partial q}}$	relative Messabweichung des Anstiegs $\frac{\partial v}{\partial q}$
$G_{\rm R}$	Transimpedanzverstärkung
$I_{\rm d}$	Dunkelstrom
Ι	Fisher-Informationsmatrix
I_s	Intensität des Streulichts am Photodetektorarray
I_i	Intensität des einfallenden Lichts
$I_{\rm Ph}$	Photostrom
$I_{\rm HV}$	Strom, der durch den Spannungsteiler bei einer PMT fließt
L	Länge der Absorptionszelle
M	Verstärkung des Photostroms aufgrund des Lawineneffekts

\mathbf{Symbol}	Bedeutung
$M_{\rm Dyn}$	Elektronenvervielfachung pro Dynode bei einer PMT
$M(\ldots),$	zusammengefasste Ausdrücke der berechneten CRLB
$M^*(\ldots)$	
N	Anzahl der Abtastwerte
$N_{\rm bit}$	Anzahl der zur Quantisierung verfügbaren Bits
$N_{\rm Bin}$	Anzahl der zusammengefassten Kamerapixel (Software-Binning)
$N_{\rm Dyn}$	Dynodenanzahl bei einer PMT
$\dot{N}_{\rm p,PG}$	Partikelgenerationsrate
NEP	Quadratwurzel der einseitigen Rauschleistungsdichte bezogen auf die Lichtleistung
$\operatorname{NEP}_{\min}$	NEP, die aus dem signalunabhängigen Rauschen resultiert
$\rm NEP_s$	NEP, die aus dem signalabhängigen Rauschen resultiert
P	Lichtleistung
$P_{\rm max}$	Sättigungslichtleistung des Detektors
P_i	Laserausgangsleistung
P_s	Streulichtleistung, die auf ein Element des Detektorarrays fällt
R	Detektorempfindlichkeit ohne Lawineneffekt und ohne Transimpedanzverstärkung
R_1	Ohm'scher Widerstand in der ersten Stufe des Transimpedanzverstärkers
	zur Strom-Spannungs-Wandlung
R_L	Lastwiderstand bei einer PMT
Re	Reynolds-Zahl
$S_{\rm n}$	Rauschleistungsdichte der gemessenen Geschwindigkeit \hat{v}
$S_{\hat{v}}$	Leistungsdichtespektrum der gemessenen Geschwindigkeit \hat{v}
S_F	absolute Transitionsstärke der Übergänge mit dem Grundzustand ${\cal F}$
$S_{FF'}$	relative Transitionsstärke für den Übergang
S_{γ}	Leistungsdichtespektrum von $\gamma(t)$
St	Strouhal-Zahl
T	Zeitauflösung der Geschwindigkeitsmessung
T_b	Temperatur des Zellkörpers der Absorptionszelle
T_c	Temperatur des Kühlfingers der Absorptionszelle
\tilde{T}_c	Temperatur des Heiz- und Kühlelements zur Regelung der Kühlfinger- temperatur
\tilde{T}'_c	Temperatur am oberen Ende des Kühlfingerhalters
T_m	Periodendauer der Frequenzmodulation
T_B	Belichtungsdauer für einen Abtastschritt
$T_{\rm U}$	Umgebungstemperatur
$U_{\rm Ph}$	Detektorausgangsspannung
\hat{U}_{card}	maximale Spannung, die bei dem gewählten Messbereich der Messkarte maximal messbar ist

Symbol	Bedeutung
$X_{\rm scat}$	Streuquerschnitt
$X_{\rm ext}$	Extinktionsquerschnitt
$V_{\rm FOV}$	Volumen der Lichtschnittregion, die auf ein Element des Detektorarrays abgebildet wird
α	Winkel zwischen der Lichteinfalls- und der Beobachtungsrichtung
β	Abbildungsmaßstab der Empfangsoptik
γ	relative Schwankung der Streulichtleistung um deren Mittelwert
Δf	äquivalente Rauschbandbreite
Δf_p	Halbwertsbreite der Absorptionslinie (Stoßverbreiterung)
Δf_D	Halbwertsbreite der Absorptionslinie (Doppler-Verbreiterung)
Δf_{τ}	Halbwertsbreite der Absorptionslinie (natürliche Verbreiterung)
Δr	Parameter der Radiusverteilungsdichte
$\Delta \hat{v}$	Messabweichung der Geschwindigkeit
Δy	Lichtschnitthöhe
Δz	Lichtschnittbreite bzwdicke
$\Delta \tilde{T}'_c$	Änderung der Temperatur \tilde{T}'_c
ϵ	Effizienz der Signalverarbeitung
ζ	halber Öffnungswinkel der Empfangsoptik
η	Quanteneffizienz des Photodetektors
η_k	Eingangssammeleffizienz bei einer PMT
$\vec{ heta}$	Vektor der unbekannten Parameter
θ_B	Winkel zwischen Beobachtungsrichtung und der Richtung der zu messenden Geschwindigkeit
θ_Q	Winkel zwischen Lichteinfallsrichtung und der Richtung der zu messenden Geschwindigkeit
ϑ_b	Temperatur des Zellkörpers der Absorptionszelle
ϑ_c	Temperatur des Kühlfingers der Absorptionszelle
$\tilde{\vartheta}_c$	Temperatur des Heiz- und Kühlelements zur Regelung der Kühlfinger- temperatur
λ	Wellenlänge
λ_{a}	Wellenlänge, die der Lasermittenfrequenz ohne Doppler-Verschiebung zu-
	geordnet ist
$\sigma_{\rm a}$	Absorptionsquerschnitt
$\sigma_{\hat{v}}^2$	Varianz der gemessenen Geschwindigkeit
σ_n^2	Varianz der Photonenanzahl
σ_P^2	Varianz der Lichtleistung
$\sigma_{P,\rm s}^2$	Varianz der Lichtleistung durch das signalabhängige Rauschen
$\sigma_{P,\min}^2$	Varianz der Lichtleistung durch das signalunabhängige Rauschen

Symbol	Bedeutung
$\sigma_{\rm RO}^2$	Varianz der Photoelektronenanzahl eines Pixels aufgrund des Ausleserau-
	schens
$\sigma^2_{U,\text{card}}$	Varianz des mit der Messkarte gemessenen Spannungssignals, aufgrund
	des Rauschens der Messkartenbauelemente
$\sigma_{\theta_B}^2$	Varianz des Winkels θ_B
$\sigma^2_{\theta_Q}$	Varianz des Winkels θ_Q
au	spektraler Transmissionsgrad der Absorptionszelle
τ_l', τ_r'	Anstieg der linken bzw. rechten Flanke der Transmissionskennlinie
φ_m	Phase des Modulationssignals
ψ	Winkel zwischen der Beobachtungsrichtung und der Ebene, die durch die
	Lichteinfallsrichtung und die Lichtschnittnormale aufgespannt wird
$\Theta_{\rm pol}$	Streufunktion für parallel $(pol = p)$ und senkrecht $(pol = s)$ zur Licht-
	schnittebene polarisiertes Licht, die die Richtungsabhängigkeit der Streu-
	ung beschreibt
Ω	Raumwinkel empfangenen Streulichts

Akronyme

Abk.	Bedeutung
APD	Avalanche Photodiode (Lawinenphotodiode)
CCD	Charge Coupled Device
CMOS	Complementary Metal Oxid Semiconductor
	(komplementärer Metall-Oxid-Halbleiter)
CRLB	Cramér-Rao Lower Bound (Cramér-Rao-Schranke)
DBR	Distributed Bragg Reflector
DDS	Direct Digital Synthesis (direkte digitale Synthese)
DEHS	Di-Ethyl-Hexyl-Sebacat
DFT	Discrete Fourier Transform (diskrete Fourier-Transformation)
DFB	Distributed Feedback
DGV	Doppler Global Velocimeter, Doppler Global Velocimetry
	(Doppler-Global-Velozimeter, Doppler-Global-Velozimetrie)
ENB	Equivalent Noise Bandwidth (äquivalente Rauschbandbreite)
FM	Frequency Modulation (Frequenzmodulation)
FSK	Frequency Shift Keying (Frequenzum tastung)
FWHM	Full Width at Half Maximum (Halbwertsbreite)
HWA	Hot-Wire Anemometer, Hot-Wire Anemometry
	(Hitzdraht-Anemometer, Hitzdraht-Anemometrie)
LDA	Laser Doppler Anemometer, Laser Doppler Anemometry
	(Laser-Doppler-Anenometer, Laser-Doppler-Anemometrie)
NEP	Noise Equivalent Power (rauschäquivalente Lichtleistung)
PDV	Planar Doppler Velocimeter, Planar Doppler Velocimetry
	$(Planar-Doppler-Velozimeter,\ Planar-Doppler-Velozimetrie\)$
PIN-PD	PIN Photodiode (PIN-Photodiode)
PIV	Particle Image Velocimetry
PMT	Photomultiplier Tube (Photovervielfacherröhre)