

Modellierung und numerische Simulation von Rissfortschritt in spröden und quasi-spröden Materialien auf Basis der *Extended Finite Element Method*

Von der Fakultät für Bauingenieurwesen der Ruhr-Universität Bochum zur Erlangung des Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte

Dissertation

von

Peter Dumstorff

Lehrstuhl für Statik und Dynamik Institut für Konstruktiven Ingenieurbau Ruhr-Universität Bochum Oktober 2006

Schriftenreihe des Instituts für Konstruktiven Ingenieurbau

Herausgeber: Geschäftsführender Direktor des Instituts für Konstruktiven Ingenieurbau Ruhr-Universität Bochum

Heft 2009-3

Peter Dumstorff

Modellierung und numerische Simulation von Rissfortschritt in spröden und quasi-spröden Materialien auf Basis der Extended Finite Element Method

> Shaker Verlag Aachen 2009

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bochum, Univ., Diss., 2005

Copyright Shaker Verlag 2009 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-8280-6 ISSN 1614-4384

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand in den Jahren 2000–2005 während meiner Tätigkeit am Institut für Statik und Dynamik der Ruhr-Universität Bochum und wurde von der Fakultät für Bauingenieurwesen als Dissertation angenommen.

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Mein besonderer Dank gilt Herrn Prof. Dr. techn. G. Meschke für die Anregung und die wissenschaftliche Betreuung meiner Arbeit. Herrn Prof. Dr. rer. nat. K. Hackl danke ich für die freundliche Übernahme des Koreferates und für das Interesse an der vorliegenden Arbeit.

Weiterhin danke ich allen Kolleginnen und Kollegen am Lehrstuhl für Statik und Dynamik für die freundschaftliche Unterstützung und die gute Zusammenarbeit. Einige dieser Kollegen sind im Laufe meiner Tätigkeit zu guten Freunden geworden, zu denen ich auch nach Abschluss meiner Tätigkeit am Lehrstuhl Kontakt halten werde.

Schließlich danke ich meiner Familie – insbesondere meiner Lebensgefährtin Eva Heimeshoff – für die Unterstützung und das Verständnis in den vergangenen Jahren.

Bochum, im Dezember 2005

Peter Dumstorff

Tag der Einreichung:	25.10.2005
Tag der mündlichen Prüfung:	22.12.2005
1 Cutachter:	Prof Dr. tochn C. Moschl

1.	Gutachter:	Prot.	Dr.	tech	n. G	. N	leschke
2.	Gutachter:	Prof.	Dr.	rer.	nat.	Κ.	Hackl

ii

Inhaltsverzeichnis

Sy	Symbolverzeichnis vii				
1	Ein	leitung	3	1	
	1.1	Motiv	ation und Stand der Forschung	2	
	1.2	Zielset	zung	8	
	1.3	Aufba	u der Arbeit	9	
2	Kor	ntinuu	nsmechanische Grundlagen	11	
	2.1	Kinen	natik	11	
		2.1.1	Konfiguration, Lage, Deformation	12	
		2.1.2	Deformationsgradient	12	
		2.1.3	GREEN-LAGRANGE-Dehnungstensor	13	
	2.2	Defini	tion von Spannungen	14	
		2.2.1	Spannungsvektoren	14	
		2.2.2	Spannungstensoren	16	
	2.3	Bilanz	- und Erhaltungssätze	17	
		2.3.1	Massenerhaltungssatz	17	
		2.3.2	Impulserhaltungssatz	18	
		2.3.3	Drehimpulserhaltungssatz	19	
	2.4	Arbeit	s- und Energieprinzipien	19	
		2.4.1	Prinzip der virtuellen Verschiebungen	19	
		2.4.2	Prinzip vom Minimum des Gesamtpotentials	21	
		2.4.3	Linearisierung	22	
		2.4.4	Vereinfachungen durch Beschränkung auf geometrische Linearität .	22	

3	Gru	indlage	en diskontinuierlicher Verschiebungsfelder	25
	3.1	Kinem	natik diskontinuierlicher Verschiebungsfelder	25
		3.1.1	Verschiebungsvektor	25
		3.1.2	Deformationsgradient	27
		3.1.3	GREEN-LAGRANGE-Dehnungstensor	28
	3.2	Defini	tion von Spannungen an internen Flächen	28
		3.2.1	Spannungsvektoren	28
		3.2.2	${\rm Spannungstensoren} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	30
	3.3	Arbeit	s- und Energieprinzipien	30
		3.3.1	Prinzip der virtuellen Verschiebungen	30
		3.3.2	Prinzip vom Minimum des Gesamtpotentials	31
		3.3.3	Linearisierung	32
		3.3.4	Vereinfachungen durch Beschränkung auf geometrische Linearität $% {\mathbb C}^{(n)}$.	33
4	Ma	terialm	nodelle	35
	4.1	Einleit	tung	35
	4.2	Kontii	nuumsmodelle	38
		4.2.1	Hyperelastisches St. VENANT-KIRCHHOFF-Materialmodell	38
		4.2.2	Verzerrungsbasiertes isotropes Kontinuumsschädigungsmodell	39
	4.3	Trakti	ons-Verschiebungsbeziehungen	42
		4.3.1	Anisotropes Schädigungsmodell	42
		4.3.2	Arbeitsäquivalentes Schädigungsmodell	45
		4.3.3	Anisotropes Plastizitätsmodell	49
5	\mathbf{Ext}	ended	Finite Element Method	55
	5.1	Klassi	sche Finite Elemente Diskretisierung	55
		5.1.1	Elementierung	55
		5.1.2	Verfeinerungskonzepte	56
		5.1.3	Eindimensionale Ansatzfunktionen	57
		5.1.4	Elementtypen	62
		5.1.5	Approximation der Feldgrößen	64
	5.2	Erweit	terte Finite Elemente Diskretisierung	64
		5.2.1	Partition of Unity Konzept	65
		5.2.2	Modellbeispiel	67
		5.2.3	Erweiterungsfunktionen	70

		5.2.4	Erweiterte Approximation der Feldgrößen	77
	5.3	Diskre	etisierung des Prinzips der Virtuellen Verschiebungen $\ . \ . \ . \ .$	82
6	Sim	ulatio	n fortschreitender Risse	89
	6.1	Rissin	itiierung	90
		6.1.1	Bruchmechanische Rissinitiierungskriterien	90
		6.1.2	Lokalisierungsanalyse	92
	6.2	Rissfor	rtschritt im Rahmen der Linear Elastischen Bruchmechanik	92
		6.2.1	Konzept der Spannungsintensitätsfaktoren	93
		6.2.2	Globales Energiekriterium	98
	6.3	Rissfo	rtschritt im Rahmen des Kohäsivzonenmodells	105
		6.3.1	Rissfortschrittskriterien	105
		6.3.2	Rissrichtungskriterien	107
7	Nur	neriscl	he Umsetzung	113
	7.1	Nume	rische Integration	113
		7.1.1	DELAUNAY-Triangularisierung	114
	7.2	Freihe	itsgradverwaltung in MSC.MARC	115
	7.3	Berech	nnungsalgorithmus	117
		7.3.1	Berechnungsalgorithmus der klassischen Kriterien	117
		7.3.2	Berechnungsalgorithmus des globalen Energiekriteriums	118
8	Nur	neriscl	he Beispiele	119
	8.1	Linear	Elastische Bruchmechanik	120
		8.1.1	Modellbeispiel	121
		8.1.2	Eingekerbter Balken	122
		8.1.3	L-förmige Scheibe	125
		8.1.4	Vier-Punkt-Biegebalken	129
		8.1.5	Bewertung der Ergebnisse	132
	8.2	Vergle	ich der Richtungskriterien	132
		8.2.1	Eingekerbter Balken	133
		8.2.2	L-förmige Scheibe	136
		8.2.3	Beidseitig eingekerbte Scheibe	138
		8.2.4	Bewertung der Ergebnisse	139
	8.3	Vergle	ich der Traktions-Verschiebungsbeziehungen	141

		8.3.1	L-förmige Scheibe	142
		8.3.2	Beidseitig eingekerbte Scheibe	144
		8.3.3	Bewertung der Ergebnisse	146
	8.4	Global	les Energiekriterium	146
		8.4.1	Eingekerbter Balken	147
		8.4.2	L-förmige Scheibe	148
		8.4.3	Beidseitig eingekerbte Scheibe	151
		8.4.4	Bewertung der Ergebnisse	154
	8.5	Große	Deformationen	155
		8.5.1	Kragarm	155
		8.5.2	Stabilität	158
		8.5.3	Bewertung der Ergebnisse	160
9	Zus	ammer	nfassung und Ausblick	161
	9.1	Zusam	menfassung	161
	9.2	Bewer	tung der Ergebnisse	163
	9.3	Ausbli	ck	164
Li	terat	urverz	eichnis	165

Verzeichnis häufig verwendeter Symbole

Mathematik

max Maximum	
Element von	
∩ Schnittmenge	
∪ Vereinigungsmer	ıge
∀ Für alle	
(•) Für die gilt	
∧ Und	
∨ Oder	
\emptyset Leere Menge	

Tensoralgebra

A^T	Transponierter Tensor
A^{-1}	Inverser Tensor
A^{-T}	Inverser, transponierter Tensor
$a \cdot b$	Skalarprodukt zweier Vektoren
$oldsymbol{a} imes oldsymbol{b}$	Kreuzprodukt zweier Vektoren
$AB = A \cdot B$	Einfache Überschiebung zweier Tensoren
$\boldsymbol{A}:\boldsymbol{B}$	Doppelte Überschiebung zweier Tensoren
$oldsymbol{A}\otimes oldsymbol{B}$	Dyadisches Produkt zweier Tensoren
Ι	Einheitstensor zweiter Stufe
I	Einheitstensor vierter Stufe
$\frac{\partial A}{\partial B}$	Partielle Ableitung eines Tensors \boldsymbol{A} nach einem Tensor \boldsymbol{B}

Operatoren

abla(ullet)	Materieller Gradient
$\nabla^{\mathrm{sym}}(ullet)$	Symmetrischer Anteil des materiellen Gradienten
Div	Materielle Divergenzbildung
$\frac{\mathrm{D}}{\mathrm{D}t} = (\dot{\bullet})$	Materielle Zeitableitung
δ	Variation einer Größe
Δ	Inkrement bzw. GÂTEAUX-Ableitung einer Größe
tr	Spur $(tr A = A : I)$
det	Determinante
L	Linearisierung

Kontinuumsmechanik

$(\bullet)_0$	Variable in der Referenzkonfiguration
$(\bullet)_t$	Variable in der Momentankonfiguration
$\partial \Omega_0, \partial \Omega_t$	Rand eines Körpers in der Referenz- und der Momentankonfiguration
$\partial_{\sigma}\Omega_0, \partial_{\sigma}\Omega_t$	Rand eines Körpers in der Referenz- und der Momentankonfiguration
	an dem Kraftgrößenrandbedingungen vorgeschrieben werden
dA, da	Materielles und räumliches Flächenelement
$\mathrm{d}V, \mathrm{d}v$	Materielles und räumliches Volumenelement
$\mathrm{d}X, \mathrm{d}x$	Materielles und räumliches Linienelement
e_1, e_2, e_3	Basisvektoren eines orthonormierten, rechtshändigen
	Koordinatensystems
e	Almansi-Dehnungstensor
E	GREEN-LAGRANGE-Dehnungstensor
f	Gravitationsbeschleunigung
F	Deformationsgradient
i	Impuls eines Körpers
J	Jakobideterminante
l	Drehimpuls eines Körpers
M, m	Masse eines Körpers
N, n	Einheitsnormalenvektor zu einer Schnittfläche in der Referenz-
	und der Momentankonfiguration
N^{\star},n^{\star}	Normalenvektor zur Berandungsfläche eines Körpers in der Referenz-
	und der Momentankonfiguration
$oldsymbol{p}_a$	Summe der Oberflächenkräfte
$oldsymbol{p}_v$	Summe der volumenhaft angreifenden Kräfte
P	Erster PIOLA-KIRCHHOFF-Spannungstensor
\boldsymbol{S}	Zweiter PIOLA-KIRCHHOFF-Spannungstensor
t, t_0	Aktuelle Zeit, Referenzzeitpunkt
t	Schnittspannungsvektor
t^{\star}	Oberflächendruck
T	Pseudoschnittspannungsvektor
T^{\star}	Pseudooberflächendruck
\boldsymbol{u}	Verschiebungsvektor
W	Energiedichtefunktion
x_i	Ortskoordinaten bezüglich eines orthonormierten, rechtshändigen
	Koordinatensystems in der Momentankonfiguration
x	Ortsvektor der Momentankonfiguration
X_i	Ortskoordinaten bezüglich eines orthonormierten, rechtshändigen
	Koordinatensystems in der Referenzkonfiguration
X	Ortsvektor der Referenzkonfiguration
ε	Lineares Dehnungsmaß
11	Gesamtpotential

$\Pi_{\rm int}$	Inneres Potential
$\Pi_{\rm ext}$	Äußeres Potential
ρ_0, ρ_t	Dichte in der Referenz- und der Momentankonfiguration
φ, φ^{-1}	Deformationsabbildungsvorschrift und deren Inverse
σ	CAUCHY-Spannungstensor
$\Omega_0, \ \Omega_t$	Körper in der Referenz- und der Momentankonfiguration

Diskontinuierliche Verschiebungsfelder

Sprung einer Größe Interne Fläche in der Referenzkonfiguration Interne Fläche in der Momentankonfiguration Mittelfläche zwischen $\partial_s^+\Omega_t$ und $\partial_s^+\Omega_t$ in der Momentankonfiguration
Transformationstensor
Regulärer Anteil des GREEN-LAGRANGE-Dehnungstensors
Regulärer Anteil des Deformationsgradienten
HEAVISIDE-Funktion an der internen Fläche
Lokale orthonormierte Rissbasis in der Momentankonfiguration
Normalenvektoren an der internen Fläche in der
Momentankonfiguration
Normalenvektor an der internen Fläche in der Referenzkonfiguration
Signum-Funktion an der internen Fläche
Auf die Fläche $\partial_s^* \Omega_t$ bezogener Traktionsspannungsvektor
Auf die Fläche $\partial_s^+ \Omega_t$ bezogener Traktionsspannungsvektor
Auf die Fläche $\partial_s^- \Omega_t$ bezogener Traktionsspannungsvektor
Pseudotraktionsspannungsvektor
\mathcal{C}^0 -stetiger Anteil des Verschiebungsfeldes
Diskontinuierlicher Anteil des Verschiebungsfeldes
\mathcal{C}^0 -stetiger Anteil des Verschiebungsfeldes
Verschiebungssprung
Regulärer Anteil der Energiedichtefunktion
Amplitude des singulären Anteils der Energiedichtefunktion
Ortsvektor eines Punktes in Ω^+
Ortsvektor eines Punktes in Ω^-
Ortsvektor eines Punktes auf $\partial_s \Omega$
Regulärer Anteil des linearen Dehnungsmaßes
Dirac-Delta Verteilung an der internen Fläche
Durch die interne Fläche $\partial_s \Omega$ getrennte Bereiche von Ω
in der Referenzkonfiguration
Durch die interne Fläche $\partial_s \Omega$ getrennte Bereiche von Ω
in der Momentankonfiguration

Materialgesetze

a_0, a_1	Parameter des Kontinuumschädigungsmodells
a_0, a_k	Parameter der Traktions-Verschiebungsbeziehung (Plastizitätsmodell)
\boldsymbol{A}	Hilfstensor im Rahmen des Plastizitätsmodells
$A^{uu}, A^{u\alpha},$	Untertensoren von \boldsymbol{A}
$A^{lpha u}, A^{lpha lpha}$	
\mathbb{C}	Steifigkeitstensor eines ungeschädigten Materials
\mathbb{C}^{da}	Schädigungsnachgiebigkeitstensor
\mathbb{C}^{t}	Steifigkeitstensor
$\mathbb{C}^{ an}$	Tangentialer Steifigkeitstensor
d	Schädigungsvariable
E	Elastizitätsmodul
\tilde{E}^{eq}	Äquivalente Verzerrung
\tilde{E}^i	Eigenwerte des Tensors der äquivalenten Verzerrung
E_E, E_u, E_t	Bereiche des elastischen Materialverhaltens
f_c	Maximale Druckfestigkeit
f_{tu}	Maximale Zugfestigkeit
g	Potentialfunktion
G_f	Bruchenergie
h	Potentialfunktion
h_s	Parameter der Traktions-Verschiebungsbeziehung (Schädigungsmodell)
H	Hardeningtensor
q	Spannungsähnliche interne Variable
q_s, q_n	Komponenten des Vektors der spannungsähnlichen internen Variablen
q	Vektor der spannungsähnlichen internen Variablen
R	Vektor der Residuen
R^{u}, R^{α}	Untervektoren des Vektors der Residuen R
$t^{\rm eq}$	Äquivalente Traktionsspannung
t_n, t_s	Komponenten des Traktionsspannungsvektors
$T_{11}^{\rm da}, T_{22}^{\rm da}$	Komponenten des Schädigungssteifigkeitstensors
T_{22}^{k}	Parameter der Traktions-Verschiebungsbeziehung (Schädigungsmodell)
T^{da}	Skalarwertige Schädigungsnachgiebigkeit
T	(Traktions)-Steifigkeitstensor eines ungeschädigten Materials
T ^{da}	Schädigungsnachgiebigkeitstensor
\mathbb{T}^{pl}	Plastizitätssteifigkeitstensor
\mathbb{T}^{t}	Steifigkeitstensor
$\mathbb{T}^{ ext{tan}}$	Tangentialer Steifigkeitstensor
\mathbb{T}^{geo}	Geometrischer Steifigkeitstensor
$[\![u]\!]_n \ [\![u]\!]_s$	Komponenten des Verschiebungssprungs
$\llbracket oldsymbol{u} bracket^{\mathrm{el}}$	Elastischer Anteil des Verschiebungssprungs
$\llbracket oldsymbol{u} bracket^{\mathrm{pl}}$	Plastischer Anteil des Verschiebungssprungs
$\llbracket u \rrbracket^{\mathrm{eq}}$	Äquivalenter Verschiebungssprung

α	Verzerrungsähnliche interne Variable
α_0	Initialer Wert der verzerrungsähnlichen internen Variablen
α_s, α_n	Komponenten des Vektors der verzerrungsähnlichen internen Variablen
α_k	Parameter der Traktions-Verschiebungsbeziehung (Schädigungsmodell)
α	Vektor der verzerrungsähnlichen internen Variablen
β	Parameter der Traktions-Verschiebungsbeziehung (Schädigungsmodell)
$\dot{\gamma}$	LAGRANGE-Multiplikator
λ, μ	LAMÉ-Konstanten
ν	Querkontraktion
ϕ	Fließ- bzw. Schädigungspotential

Finite Elemente Formulierung

d^k	Zum Riss k korrespondierende Abstandsfunktion
F_i^{km}	Zur Rissspitze km korrespondierende Rissspitzenfunktionen
\tilde{F}_4^{km}	Zur Riss spitze km korrespondierende modifizierte Riss spitzenfunktion
$ar{ar{k}}_{ij},ar{ar{k}}_{ij},ar{ar{k}}_{ij},ar{ar{k}}_{ij},ar{ar{k}}_{ij}$	Anteile der Steifigkeitsmatrix
K^{km}	Zur Risskreuzung km korrespondierende Erweiterungsfunktion
L_n	LEGENDRE-Polynome
N_i	Finite Elemente Ansatzfunktionen
NE	Anzahl der finiten Elemente im Finite Elemente Netz
NK	Anzahl der Knoten im finiten Element
NN	Anzahl der Knoten im Finite Elemente Netz
NR	Anzahl der Risse
$\mathcal{N}_{km}^{ ext{t}}$	Menge der mit den zur Rissspitze km korrespondierenden
	Rissspitzenfunktionen angereicherten Knoten
$\mathcal{N}_{km}^{ ext{k}}$	Menge der mit der zur Risskreuzung km korrespondierenden
	Erweiterungsfunktion angereicherten Knoten
$\mathcal{N}_k^{\mathrm{s}}$	Menge der mit der zum Riss k korrespondierenden Signum-Funktion
	angereicherten Knoten
P_n	LAGRANGE-Polynom
r_{erw}	Erweiterungsradius der Rissspitzenfunktionen
$ar{m{r}}_i,m{\hat{r}}_i$	Anteile des Vektors der inneren Kräfte
$ar{m{r}}^{\star}_{i}$	Anteil des Vektors der äußeren Kräfte
S^k	Zum Riss k korrespondierende Signum-Funktion
$oldsymbol{u}_i^{\mathrm{n}}$	Vektor der Knotenfreiheitsgrade am Knoten i
$ar{m{u}}_i, m{\hat{u}}_i$	Anteile des Vektors der Knotenfreiheitsgrade am Knoten i
$oldsymbol{X}_j^{\mathrm{n}}$	Ortsvektor des Knotens j
$oldsymbol{X}_{km}^{\mathrm{t}}$	Ortsvektor der Riss spitze km
$oldsymbol{X}_{km}^{ ext{tw}}$	Ortsvektor des Ursprungs des Riss spitzensegments km
κ	Kolosov-Konstante
$\{\varphi_i\}$	Partition of Unity (Zerlegung der Eins)

Φ_n	Modifizierte LEGENDRE-Polynome
ξ_i	Koordinaten bezüglich eines natürlichen Koordinatensystems
$\boldsymbol{\xi}_i$	Basisvektoren des natürlichen Elementkoordinatensystems
$\Omega_i^{\rm e}$	Elementgebiet des Elements i
Ω_i^{n}	Einflussbereich des Knotens i

Rissfortschritt

\mathbb{C}^{ep}_{perf}	Perfekt-plastische Materialtangente
E^{\star}	Materialparameter
J	J-Integral
\mathcal{G}	Energiefreisetzungsrate
$K_{\rm I}, K_{\rm II}, K_{\rm III}$	Spannungsintensitätsfaktoren
K	Wärmeleittensor
M	Interaktionsintegral
q	Wichtungsfunktion zur Berechnung der Spannungsintensitätsfaktoren
\hat{Q}	Temperaturfluss
r_c	Rissfortschrittslänge
S_i	Isolinie des Temperaturverlaufs ϑ
T_s	Einheitstangentenvektor zum Riss
w	Wichtungsfunktion zur Berechnung der gemittelten Spannungen
θ_c	Rissfortschrittswinkel
θ	Temperatur
П	Gespeicherte Energie
$\Pi_{\rm int}$	Elastische Verzerrungsenergie
σ_m	Mittlere Hauptspannung
σ_s	Maximale Schubspannung
σ_m	Um die Rissspitze gemittelter Spannungstensor
Ψ	Gesamtenergie
$\Psi_{\rm diss}$	Dissipierte Energie