Besondere Phänomene bei der Gutbewegung von Mikroteilen Auf Schwingrinnen

Von der Fakultät für Maschinenbau der Helmut-Schmidt-Universität/ Universität der Bundeswehr Hamburg

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigte

DISSERTATION

vorgelegt von

Diplom-Wirtschaftsingenieur GUIDO GRAVENKÖTTER aus Emsdetten (Westfalen)

Hamburg 2009

Tag der mündlichen Prüfung: 27. Februar 2009

Referent:Univ.-Prof. Dr.-Ing. Rainer BrunsKorreferent:Univ.-Prof. Dr.-Ing. Jens Wulfsberg

Gedruckt mit Unterstützung der Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg. Berichte aus dem Institut für Konstruktions- und Fertigungstechnik

Band 13

Guido Gravenkötter

Besondere Phänomene bei der Gutbewegung von Mikroteilen auf Schwingrinnen

Shaker Verlag Aachen 2009

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hamburg, Helmut-Schmidt-Univ., Diss., 2009

Copyright Shaker Verlag 2009 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-8087-1 ISSN 1861-5260

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de Alles Leben ist Problemlösen.

Alle Organismen sind Erfinder und Techniker, gute oder weniger gute, erfolgreich oder weniger erfolgreich im Lösen von technischen Problemen.

> Sir Karl Popper 1902-1994

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Wissenschaftlicher Mitarbeiter am Lehrstuhl für Maschinenelemente und Technische Logistik der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

Mein erster Dank gilt meinem Doktorvater, Herrn Univ.-Prof. Dr.-Ing. Rainer Bruns, der zu jedem Zeitpunkt ein offenes Ohr für meine Fragen hatte und die Fertigstellung der Arbeit in vielfältiger Weise gefördert hat. In meiner Zeit als sein Mitarbeiter unterstützte er mich durch zahlreiche konstruktive Anregungen und trug damit maßgeblich zum Gelingen dieser Arbeit bei.

Bedanken möchte ich mich bei Herrn Univ.-Prof. Dr.-Ing. Jens Wulfsberg für die bereitwillige Übernahme des Korreferats sowie bei Herrn Prof. Karl Böhringer für die herzliche Aufnahme und die gute Zusammenarbeit während meiner Zeit als Gastwissenschaftler an der University of Washington in Seattle, WA, USA.

Werner Albe, Bernfried Heinken, Holger Kumpfert und Jochen Klostermann danke ich für die stets unverzügliche und äußerst hilfsbereite Unterstützung bei allen Arbeiten im Labor. Kerstin Semcken aus dem Sekretariat möchte ich für die angenehme Zusammenarbeit und den morgendlichen Kaffee für einen guten Start in den Tag bedanken.

Ferner gilt mein Dank den Wissenschaftlichen Mitarbeitern Alexander Frenkel, Stefan Steiger, Nils Busch, Björn Cleves, Stephan Ulrich, Melf Gerthsen, Oliver Höppner, Klaus Heißenberg und Gunnar Rückner für das stets freundschaftliche Verhältnis und die anregenden Diskussionen am Lehrstuhl.

Mein besonderer Dank gilt Herrn Erik Snowdon der im Rahmen seiner Studien- und Diplomarbeit die Arbeit wertvoll unterstützt hat, sowie Herrn Frank Freyer.

Desweiteren verdanke ich der Bundeswehr, dass sie mir die Möglichkeit zu einer Tätigkeit als Wissenschaftlicher Mitarbeiter Offizier gegeben hat. Ein besonders herzlicher Dank gebührt den Herren Markus van Hümmel, Andre Jerenz, Peter Kohrs, Robert Ludwig, Alf Stegemöller und Jan-Henning Wille für die stetigen Ermunterungen und den Rückhalt während meiner gesamten akademischen Laufbahn.

Schließlich möchte ich mich bei meiner Familie für das in mich gesetzte Vertrauen bedanken.

Guido Gravenkötter

Kurzfassung

Besondere Phänomene bei der Gutbewegung von Mikroteilen auf Schwingrinnen

Schwingrinnen gehören zu der Gruppe der Stetigförderer. Sie transportieren sowohl Stück- als auch Schüttgut, indem der Rinnenboden periodische Schwingungen durchführt, und das Fördergut dadurch in kleinen Sprüngen entlang der Rinne gefördert wird. Mit der zunehmenden Verbreitung von Produkten der Mikrosystemtechnik wuchs die Notwendigkeit die Auswirkungen der Miniaturisierung von Bauteilen auf die eingesetzte Materialflusstechnik zu untersuchen.

Aufgrund der stark verringerten Dimensionen der Fördergüter vergrößert sich das Oberfläche-zu-Volumenverhältnis, sodass oberflächenbezogene Kräfte an Bedeutung gewinnen und signifikant auf den Fördervorgang einwirken. Die dadurch entstehenden Wechselwirkungen sind bei der Förderung von makroskopischen Gütern vernachlässigbar und standen deshalb in der Vergangenheit noch nicht im Fokus der Forschungsaktivitäten.

Die vorliegende Dissertation untersucht die neu auftretenden Phänomene bei der Gutbewegung von Mikroteilen indem erstmalig verschiedene Adhäsionskräfte und deren Auswirkung auf den Fördervorgang betrachtet werden. Mithilfe einer Hochgeschwindigkeitskamera wurde die Bewegung des Mikroteils berührungslos erfasst und mit dem Ergebnis einer Simulation verglichen, welche auf ein weiterentwickeltes Modell basiert. Bei den Untersuchungen stellte sich unter anderem heraus, dass Strömungskräfte zu einer starken Wechselwirkung zwischen Fördergut und Rinnenobefläche führen. Infolgedessen kann sich das Mikroteil nicht vollständig vom Rinnenboden lösen, was in einer erheblichen Beeinträchtigung des Materialflusses resultiert.

Abstract

Unique Phenomena during the Motion of Micro Parts on Vibratory Conveyors

Vibratory conveyors belong to the class of continuous conveyors. The channel bottom, conducting a periodic oscillation, transports piece goods as well as bulk goods along the channel in short jumps. With the increasing distribution of MEMS products, the need to examine the effect of miniaturization of the components on the engaged material flow technology arose.

Due to the extreme reduction in dimension of transported parts, the surface-tovolume ratio increased in such a way that surface area related forces gain in importance and significantly influence the conveyance. The emerging interactions are negligible for the conveyance of macroscopic goods and hence weren't in focus of past research activities.

This presented PhD thesis examines the new phenomena that occur during the motion of micro parts, by considering for the first time different adhesion forces and their effect on the transportation process. With the use of a high speed camera the micro part motion was measured contactless and compared with the results of a computer simulation based on an enhanced model. Amongst others it turned out that fluid forces created a strong interaction between the transported material and the channel surface. Consequently, the micro part is not able to completely lift off from the channel bottom, resulting in a serious interference of the material flow process.

Inhaltsverzeichnis

AI	Abkürzungsverzeichnis ix				
Sy	mbo	lverzeio	chnis	xi	
1	Einl	eitung		1	
	1.1	Proble	emstellung	1	
	1.2	Litera	uturüberblick	3	
	1.3	Ziel u	nd Aufbau der Arbeit	3	
2	Sta	nd der	Wissenschaft und der Technik	7	
	2.1	Wicht	ige Begriffe	7	
	2.2	Grund	llagen zum Vibrationsförderer	8	
		2.2.1	Allgemeines	8	
		2.2.2	Förderprinzipien	10	
		2.2.3	Fördervorgang auf der Schwingrinne	12	
		2.2.4	Übertragung der Theorie zum Mikrowurf auf die Schüttgutför-		
			derung	16	
		2.2.5	Auswahlkriterien der wichtigsten Betriebsparameter	19	
		2.2.6	Bauarten von Schwingrinnen	22	
		2.2.7	Arbeitspunkt eines Einmassen-Schwingsystems	22	
3	Unt	ersuch	ung der Wechselwirkungskräfte zwischen Mikroteil und Schwing	-	
	rinn	е		27	
	3.1	Vorge	hensweise zur Analyse der Wechselwirkungskräfte $\ .\ .\ .\ .$.	27	
	3.2	Lift-of	ff-Versuch eines Mikroteils	28	
		3.2.1	Ziel des Versuchs	28	
		3.2.2	Versuchsaufbau	29	
		3.2.3	Versuchsobjekte	30	
		3.2.4	Versuchsablauf	31	
		3.2.5	Versuchsauswertung	31	
	3.3	Beitra	ag der elektrostatischen Kraft	34	
		3.3.1	Entstehung der Ladungstrennung	34	
		3.3.2	Größe der elektrostatischen Kraft	35	

		3.3.3	Vermeidung der elektrostatischen Aufladung	37		
		3.3.4	Auswirkung auf den Fördervorgang	38		
	3.4	Beitra	g der Kapillarkraft	38		
		3.4.1	Benetzbarkeit von Oberflächen	38		
		3.4.2	Entstehung der Kapillarkraft	39		
		3.4.3	Auswirkung auf den Fördervorgang	41		
	3.5	Beitra	g der van-der-Waals-Kraft	42		
		3.5.1	Bestandteile der van-der-Waals-Kraft	42		
		3.5.2	Dispersionswechselwirkung zwischen Festkörpern	43		
		3.5.3	Auswirkung auf den Fördervorgang	46		
	3.6	Einflu	ss von Strömungskräften	51		
		3.6.1	Vorüberlegungen	51		
		3.6.2	Beschreibung des Volumenstroms einer ebenen Schichtenströmung	52		
		3.6.3	Einfluss der Umgebungsbedingungen auf die relevanten Stoff-			
			werte der Luft	55		
		3.6.4	Modellierung der Strömung zwischen dem Mikroteil und der Rin-			
			nenoberfläche	60		
		3.6.5	Transformation der Bewegungsgleichungen des luftleeren Raums			
			in eine dimensions lose Darstellung	63		
		3.6.6	Erweiterung der Bewegungsgleichungen um den Einfluss der Strö-			
			mungskraft F_S	65		
		3.6.7	Einfluss des Luftwiderstands F_L auf den Mikrowurf $\ .\ .\ .\ .$	68		
		3.6.8	Validierung des Modells der Strömungskräfte durch Variation			
			der Viskosität in einer Vakuumkammer	70		
		3.6.9	Einfluss der Luftströmung bei einer horizontal oszillierenden Platte	73		
	3.7	Fehler	analyse	76		
		3.7.1	Während der Versuchsvorbereitung	76		
		3.7.2	Während der Versuchsdurchführung	76		
	3.8	Schlus	ssfolgerungen für die Praxis	76		
4	Stal	bilitätsanalyse der vertikalen Fördergutbewegung				
	4.1 Modellbildung		llbildung	79		
		4.1.1	Vorüberlegungen	79		
		4.1.2	Modellierung der Strömung zwischen dem Mikroteil und der Rin-			
			nenoberfläche in Abhängigkeit vom Kippwinkel α	80		
		4.1.3	Bewegungsdifferentialgleichungen des Mikroteils in Abhängig-			
			keit vom Kippwinkel α	84		
		4.1.4	Linearisierung des Systems	86		
	4.2	2 Bestimmung der Eigenwerte des linearisierten Systems				
7.4						

	4.3	.3 Auswirkung der Skalierung der Gutgröße auf das Massenträgheitsmo-			
		ment		89	
	4.4	.4 Auswirkung der Kippbewegung auf die Förderung von Mikroteilen			
5	Aus	wirkun	g der Strömungskraft auf die Fördergeschwindigkeit	93	
	5.1	Messu	ng der Fördergeschwindigkeit	93	
		5.1.1	Versuchsaufbau	93	
		5.1.2	Versuchsobjekte	94	
		5.1.3	Versuchsablauf	95	
		5.1.4	Versuchsauswertung	96	
5.2 Diskussion der Ergebnisse		98			
		5.2.1	Vorüberlegungen	98	
		5.2.2	Dimensionslose mittlere Fördergeschwindigkeit	98	
		5.2.3	Vergleich der gemessenen Fördergeschwindigkeit mit der theore-		
			tischen Fördergeschwindigkeit	99	
	5.3	Schlus	sfolgerungen für die Praxis	103	
6	Zusa	ammen	fassung und Ausblick	105	
Ał	Abbildungsverzeichnis 107				
Tabellenverzeichnis 10					
Lit	Literaturverzeichnis 117				

Abkürzungsverzeichnis

AFM	<u>A</u> tomic Force Microscopy
CFD	Computational Fluid Dynamics
DEM	$\underline{\mathbf{D}}$ iskrete- $\underline{\mathbf{E}}$ lemente- $\underline{\mathbf{M}}$ ethode
DGL	Differentialgleichung
ESD	$\underline{\underline{E}}$ lectrostatic $\underline{\underline{D}}$ ischarge
MEMS	$\underline{\mathbf{M}} \underline{\mathbf{icro-\underline{E}}} \underline{\mathbf{lcro-\underline{M}}} \underline{\mathbf{chanical}} \ \underline{\mathbf{S}} \underline{\mathbf{ystems}}$
MST	Mikrosystemtechnik
RH	$\underline{\mathbf{R}}$ elative $\underline{\mathbf{H}}$ umidity
SMD	<u>Surface</u> <u>M</u> ounted <u>D</u> evice
vdW	$\underline{v}an-\underline{d}er-\underline{W}aals$

Symbolverzeichnis

Griechische Symbole

Symbol	Einheit	Bezeichnung
α	rad	Kippwinkel
β	rad	Anstellwinkel
Г	_	Wurfkennzahl
γ	$\rm Jm^{-2}$	spezifische Oberflächenenergie
δ	_	Anfangsspalthöhe
ϵ	_	dielektrische Suszeptibilität
ϵ	$\mathrm{CV}^{-1}\mathrm{m}^{-1}$	elektrische Feldkonstante
η	$\rm Nsm^{-2}$	dynamische Viskosität
η	_	Schüttgutkorrekturfaktor
Θ	$\rm kgm^2$	Massenträgheitsmoment
Θ	rad	Kontaktwinkel
Λ	m	freie Weglänge der Gasteilchen
λ	_	Eigenwert
μ_H	_	Haftreibungskoeffizient
ν	$\mathrm{m}^2 s^{-1}$	kinematische Viskosität
ρ	$\rm kgm^{-3}$	Dichte
au	${\rm Nm^{-2}}$	Schubspannung
φ	_	relative Luftfeuchtigkeit
ω	$rad s^{-1}$	Kreisfrequenz

Symbol	Einheit	Bezeichnung
A	J	Hamaker-Konstante /-Koeffizient
A	m^2	Fläche
B	m	Fördergutbreite
b	m	Spaltbreite
c	${\rm Nm^{-1}}$	Federrate
c_W	_	Widerstandsbeiwert
d	m	Abstand
d	s^{-1}	Dämpfungskonstante
F	Ν	Kraft
f	s^{-1}	Frequenz
g	${\rm ms}^{-2}$	Fallbeschleunigung
H	m	Förderguthöhe
h	m	Höhe
Ι	_	Einheitsmatrix
K	_	Maschinenkennziffer
K_F	_	Formfaktor
L	m	Fördergutlänge
l	m	Länge
M	Nm	Drehmoment
m	kg	Masse
n	_	Wurfdauerfaktor
p	bar	Druck
Q	$\mathrm{m}^3 s^{-1}$	Volumenstrom
Q	С	elektrische Ladung
R	${\rm Jkg^{-1}}K^{-1}$	allgemeine Gaskonstante
R_n	_	Retardationsfaktor
Rq	m	quadratischer Mittelwert der Profilordinaten
Rz	m	größte Höhendifferenz eines Profils
r	m	Scheibenradius
s	m	Strecke in Richtung der Anregung
T	Κ	Temperatur
ΔT	Nm	Stoßenergie
t	s	Zeit
U	Nm	Wechselwirkungsenergie
u	${\rm ms}^{-1}$	Geschwindigkeit in Richtung der x -Achse

Lateinische Symbole

Symbol	Einheit	Bezeichnung
\overline{V}	m^3	Volumen
v	_	Eigenvektor
\overline{v}	${ m ms^{-1}}$	mittlere Teilchengeschwindigkeit
v_y	${ m ms^{-1}}$	Relativgeschwindigkeit in Richtung der y -Achse
W	Nm	Arbeit
x	m	Strecke auf der x -Achse
y	m	Strecke auf der y -Achse
z	m	Strecke auf der z -Achse

Indices

Index	Bezeichnung
x_0	im Anfangszustand
x_a	den Aufschlag betreffend
x_D	Dampf
x_G	Fördergut
x_H	auf die Haftphase bezogen
x_L	Luft
x_m	mittlere
x_{mess}	durch Messung ermittelt
x_R	Rinne
x_{rel}	relativ
x_S	Strömung
x_S	Sättigungszustand
x_s	den Sprung betreffend

Andere Zeichen

Symbol	Bezeichnung
â	Amplitude einer Größe
\tilde{x}	dimensionslose Größe
<u>x</u>	Vektor