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Götz Pfander and Prof. Dr.-Ing. Martin Bossert for accepting to join the dissertation

committee.

I also want to thank my colleagues Fangning Hu, M.Sc., Ph.D., Khaled Shawky Hassan,

M.Sc., Apirath Limmanee, M.Sc., and Humberto Beltrão Neto, M.Sc., for the interest-

ing, multicultural work environment, for valuable discussions, and support.

I want to express my special thanks to my dear colleague Sara Sandberg, M.Sc., from

Lule̊a Tekniska Universitet, Sweden. Parts of this work evolved from close cooperation

with her and I have always enjoyed working together with her. Not only on a profes-

sional basis but also privately, I enjoyed joining her team in Lule̊a in 2006 as well as

welcoming her for a research visit in 2008.

Finally, I want to thank my family and my friends for their support, their appreciation,

and the non-scientific balance.

I confirm that this dissertation represents my own work. The contribution of any

supervisors and others to the research and to the dissertation was consistent with

normal supervisory practice.

Neele von Deetzen

Bremen, December 2008





I

Abstract

In this thesis, we present modern and efficient channel coding techniques for the

protection of user data with heterogeneous error sensitivities. Especially multimedia

data being transmitted through communication networks often consist of unequally

important parts, such as header information, essential payload, and additional data

for increased quality. Protecting all data equally makes the transmission inefficient.

A system providing unequal error protection (UEP) may be much more efficient and

improve the perceptual quality at the receiver.

UEP transmitters and receivers should be designed such that transmission errors only

lead to graceful degradation. For good channel conditions, the quality at the receiver is

usually good. If the channel conditions degrade, UEP receivers should still be capable

of exploiting at least the most important data in order to allow for graceful degradation

instead of complete failure.

First, we introduce time-variant, rate-compatible pruned convolutional codes, which

are a counterpart of the well-known punctured convolutional codes. Pruning may be

an alternative to puncturing, especially if no feedback channel from the receiver to the

transmitter is available. Variable-rate code families can be constructed from a given

mother code by selectively pruning state transitions in the trellis of the code, thereby

reducing the code rate. Theoretically, any code rate smaller than that of the mother

code can be generated by applying suitable pruning patterns. We show that the free

distance of a convolutional mother code can be specifically increased by pruning and

that pruned convolutional codes are automatically rate compatible. Furthermore, we

list tables of pruning patterns leading to good decoding results when being applied in

convolutional and Turbo codes.

As an additional result, we present an analysis of hybrid code concatenations and

their decoder scheduling. Time-invariant pruning can be represented as the serial

concatenation of a pruning code and the mother code. Using pruned codes for Turbo

codes leads to a hybrid serial/parallel concatenation. The decoding success of such a

hybrid concatenation strongly depends on the scheduling of the constituent decoders.

We show a detailed analysis of the decoding process and propose an optimisation

strategy for successful decoding with a minimum number of necessary iterations.

Another efficient coding scheme is multilevel coding which is a combination of channel

coding and modulation, where both are jointly optimised. Multilevel codes are not
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restricted to certain types of codes or modulation schemes and are, therefore, very

flexible. The theory of multilevel codes provides a very natural and intuitive extension

to unequal error protection. We present design rules for such systems based on the

optimum design criteria for multilevel codes, i.e., the mutual information. By applying

pruned and punctured Turbo codes as channel codes and higher order signal constel-

lations in the modulation unit, we show examples of an image transmission where the

UEP design yields good results whereas a standard design is not able to reconstruct the

image at the receiver at all. The results and flexibility are further improved by applying

special hierarchical modulation schemes instead of standard signal constellations.

The third part of the thesis contains design strategies for bandwidth-efficient low-

density parity-check (LDPC) codes providing UEP. An intuitive way of designing UEP-

LDPC codes is to design the variable node degree distribution in an irregular way. When

dealing with higher order signal constellations, the code bits experience non-uniform

disturbances which have to be taken into account during density evolution. We present

a hierarchical optimisation algorithm using a detailed density evolution and give a list

of optimised degree distributions.

The last part of this thesis is also connected to UEP-LDPC codes and deals with the

UEP properties of different construction algorithms for the parity-check matrix of an

LDPC code. We experience differences in the UEP behaviour of different construction

algorithms despite them producing graphs with exactly the same degree distributions.

We discuss several well-known algorithms and analyse properties of the parity-check

matrix which are relevant for these different behaviours. For an extensive analysis,

we define a detailed check node degree distribution and specify the corresponding

detailed mutual information evolution. In order to confirm our argument, we modify

a construction algorithm without UEP capability such that the relevant properties are

changed and a UEP-capable code is obtained.
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