

Finite Elemente Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse

Von der Fakultät für Bauingenieurwesen der Ruhr-Universität Bochum zur Erlangung des Grades Doktor-Ingenieur (Dr.-Ing.) genehmigte

Dissertation

von

Christian Becker

Lehrstuhl für Statik und Dynamik Institut für Konstruktiven Ingenieurbau Ruhr-Universität Bochum November 2007

Einreichung	:	10. Januar 2007
Mündliche Prüfung	:	6. Juli 2007
1. Gutachter	:	Prof. Dr. techn. G. Meschke
		Lehrstuhl für Statik und Dynamik
		Institut für Konstruktiven Ingenieurbau
		Ruhr-Universität Bochum
2. Gutachter	:	Prof. Dr. rer. nat. K. Hackl
		Lehrstuhl für Allgemeine Mechanik
		Institut für Mechanik
		Ruhr-Universität Bochum

Schriftenreihe des Instituts für Konstruktiven Ingenieurbau

Herausgeber: Geschäftsführender Direktor des Instituts für Konstruktiven Ingenieurbau Ruhr-Universität Bochum

Heft 2008-3

Christian Becker

Finite Elemente Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse

> Shaker Verlag Aachen 2008

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Bochum, Univ., Diss., 2007

Copyright Shaker Verlag 2008 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-7814-4 ISSN 1614-4384

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit am Lehrstuhl für Statik und Dynamik der Ruhr-Universität Bochum und wurde von der Fakultät für Bauingenieurwesen als Dissertation angenommen. Wesentliche Aspekte dieser Arbeit entstanden im Rahmen des Teilprojekts B3 des Sonderforschungsbereichs 398 "Lebensdauerorientierte Entwurfskonzepte unter Schädigungs- und Deteriorationsaspekten" unter Förderung der Deutschen Forschungsgemeinschaft (DFG).

Mein besonderer Dank gilt Herrn Prof. Dr. techn. G. Meschke für die Anregung und wissenschaftliche Betreuung dieser Arbeit. Seine stetige Bereitschaft zu fachlichen Diskussionen hat wesentlich zum Gelingen dieser Arbeit beigetragen.

Mein weiterer Dank gilt Herrn Prof. Dr. rer. nat. K. Hackl für die Übernahme des Zweitgutachtens. Sein Interesse an meiner Arbeit hat mich sehr gefreut. Ferner bedanke ich mich bei Herrn Prof. Dr.-Ing. W. Brilon sowie bei Herrn Prof. Dr.-Ing. M. Thewes für Ihre Mühen im Rahmen meines Promotionsverfahrens.

Bedanken möchte ich mich ebenfalls bei Herrn Prof. Dr.-Ing. D. Kuhl, bei dem ich als studentische Hilfskraft meine ersten Erfahrungen mit der Finite-Elemente-Methode machen durfte.

Mein herzlicher Dank gilt allen Kollegen des Lehrstuhls - ehemaligen wie aktuellen - für die kollegiale und vor allem freundschaftliche Zusammenarbeit in den vergangenen Jahren.

Ebenso gilt mein Dank Frau cand.-Ing. Hannah Henske und Herrn cand.-Ing. Nicolas Fickler, die mich durch ihre Arbeit als studentische Hilfskräfte wesentlich in meiner Arbeit unterstützt haben.

Meinen Eltern, Manfred und Ellen Becker, sowie meiner Schwester, Jenny Becker, danke ich für die Unterstützung, die ich von ihnen zu jeder Zeit meiner Ausbildung und auch während meines beruflichen Werdegangs erhalten habe.

Nicht zuletzt möchte ich mich bei meiner Freundin, Verena Krieger, bedanken. Durch ihr Verständnis, ihre Geduld und Zuneigung hat sie einen wesentlichen Anteil am Gelingen dieser Arbeit.

Essen, November 2007

Christian Becker

Inhaltsverzeichnis

1	Ein	leitung	5	1
	1.1	Einfül	arung und Motivation	1
	1.2	Zielset	zung und Umfang der Arbeit	8
	1.3	Gliede	erung der Arbeit	10
2	Kor	ntinuu	msmechanische Grundlagen	11
	2.1 Anfangsrandwertproblem der Festkörpermechanik			
		2.1.1	Lokale Impulsbilanz	12
		2.1.2	Lokale Drehimpulsbilanz	13
		2.1.3	Kräftegleichgewicht am Neumannrand	14
		2.1.4	Dirichlet Randbedingungen	15
		2.1.5	Einführung eines Dämpfungsterms	15
		2.1.6	Anfangsbedingungen	15
	2.2	Anfan	gsrandwertproblem der Wärmeleitung	16
		2.2.1	Lokale Energiebilanz	16
		2.2.2	Energiebilanz am Neumannrand	17
		2.2.3	Dirichlet Randbedingungen	17
		2.2.4	Energiespeicherterm	18
		2.2.5	Anfangsbedingungen	18
	2.3	Anfan	gsrandwertproblem von Potentialströmungen	19
		2.3.1	Lokale Massenbilanz	19
		2.3.2	Massenbilanz am Neumannrand	19
		2.3.3	Dirichlet Randbedingungen	19
		2.3.4	Speicherterm eines teilgesättigten porösen Mediums	19
		2.3.5	Anfangsbedingungen	20
	2.4	Physil	kalische Wechselwirkungen der beschriebenen Einfeldprobleme	20

		2.4.1	Thermo-mechanische Kopplung	21
		2.4.2	Hygro-mechanische Kopplung	21
	2.5	Metho	ode der gewichteten Residuen	22
		2.5.1	Prinzip der virtuellen Feldgrößen	24
3	Fin	ite-Ele	mente-Methode	25
	3.1	Schwa	che Formulierung gekoppelter Anfangsrandwertprobleme	25
	3.2	tegration-Diskretisierung in der Zeit	26	
		3.2.1	Zeitintegration nach NEWMARK	27
		3.2.2	Generalisierte Mittelpunktsregel	28
	3.3	Diskre	etisierung im Raum	30
		3.3.1	Partitionierung des Gebiets	30
		3.3.2	Wahl der Ansatzfunktionen	31
		3.3.3	Approximation der Feldgrößen	33
		3.3.4	Approximation der semi-diskreten virtuellen Arbeiten	34
		3.3.5	Konsistente Linearisierung der Approximation der semi-diskreten virtuellen Arbeiten	34
		3.3.6	Numerische Integration	35
		3.3.7	Ensemblierung zur Struktur	36
	3.4	Lösun	g des globalen Gleichungssystems	37
4	3D-	p-Finit	te-Elemente-Methode	39
	4.1	Eindir	nensionale <i>p</i> -Ansatzfunktionen	39
		4.1.1	Ansatzfunktionen vom LAGRANGE-Typ	40
		4.1.2	Ansatzfunktionen vom LEGENDRE-Typ	40
		4.1.3	Vergleich der p -Ansätze vom LAGRANGE- und LEGENDRE-Typ	41
	4.2	Hierar	chische 3D- <i>p</i> -Ansatzfunktionen	44
		4.2.1	Räumlich anisotrope Approximation der Feldgrößen	46
		4.2.2	Feldweise Wahl der Approximationsordnung	50
		4.2.3	Effiziente Simulationsplattform mittels feldweiser, räumlich aniso- troper Approximationen	53
	4.3	Geom	etriebeschreibung	54
		4.3.1	Isoparametrisches Konzept	54
		4.3.2	Blending Funktionen Methode	55
		4.3.3	Subparametrisches Konzept	57

5	Kontinuumsmechanische Material- und Mehrfeldmodelle					
	5.1	Isotro	pes Kontinuumsschädigungsmodell	59		
	5.2	Hygro	-thermo-mechanisches Mehrfeldmodell	63		
		5.2.1	Modellierung des Feuchtefelds	63		
		5.2.2	Hygro-mechanische Materialmodellierung von Beton	65		
		5.2.3	Einfluss von Rissen auf den Feuchtetransport	68		
6	Erw	veitert	e-Finite-Elemente-Methode für Mehrfeldprobleme	71		
	6.1	Model	lierung von Rissen mittels der <i>Erweiterten</i> -Finite-Elemente-Methode	71		
		6.1.1	Zerlegung der Eins- Partition-of-Unity	72		
		6.1.2	Kinematik des diskontinuierlichen Verschiebungsfelds $\ .\ .\ .\ .$.	73		
		6.1.3	Prinzip der virtuellen Verschiebungen	75		
		6.1.4	Erweitertes Freiheitsgradkonzept	76		
		6.1.5	Implizite Beschreibung der Risstopologie mittels Level-sets	78		
		6.1.6	Beschreibung kohäsiven Materialverhaltens mittels Traktions- Verschiebungsbeziehung	80		
		6.1.7	Approximationsordnung innerhalb der <i>Erweiterten</i> -Finite- Elemente-Methode	82		
		6.1.8	Simulation von Rissfortschritt	83		
	6.2	Berüc	ksichtigung des Feuchtefelds	84		
		6.2.1	Diskontinuierliche Beschreibung des Flüssigkeitsdrucks	84		
		6.2.2	Prinzip des virtuellen Flüssigkeitsdrucks	85		
		6.2.3	Kontinuierliche Approximation des Feuchtefelds	86		
		6.2.4	Einfluss des Wasserdrucks auf die Traktionsverschiebungsbeziehung	87		
7	Nui	merisc	he Umsetzung	89		
	7.1	Prepre	ocessing	89		
		7.1.1	Zur Konformität benachbarter $p\mbox{-}{\rm Elemente}$ vom Legendre-Typ $\ .$.	93		
		7.1.2	Feldweise Approximation	95		
	7.2	Nume	rische Integration innerhalb der <i>Erweiterten</i> -Finite-Elemente-Methode	96		
	7.3	Steuerung des Rissfortschrittsprozesses				
	7.4	Visualisierung der Ergebnisse - Postprocessing				
		7.4.1	Visualisierung der Bruchfläche mittels Level-sets	104		
	7.5	Nume vom I	rische Integration bei Verwendung hierarchischer Ansatzfunktionen LEGENDRE-Typ	104		

8	Sim	Simulationen und numerische Beispiele				
	8.1	Thern	no-mechanisch belastete Lochscheibe	. 107		
		8.1.1	Bewertung der Ergebnisse	. 115		
	8.2	Hygro	-mechanisch belastete Kugelschalenstruktur	. 116		
		8.2.1	Bewertung der Ergebnisse	. 125		
	8.3 Numerische Simulationen von Rissbildung					
		8.3.1	Biegebalken mit geradem Rissverlauf	. 126		
		8.3.2	Beidseitig eingekerbte Scheibe	. 128		
		8.3.3	Vier-Punkt-Biegeversuch	. 131		
		8.3.4	Ankerauszugversuch	. 132		
		8.3.5	Hygro-mechanisch belastete Balkenstruktur	. 135		
		8.3.6	Bewertung der Ergebnisse	. 137		
9	Zusammenfassung und Ausblick 14					
	9.1	9.1 Zusammenfassung				
	9.2	Ausbl	ick	. 144		