Dr. PETRU SCUTAREANU

CONSTITUTIVE RESISTANCE AND INDUCED DEFENCE AGAINST INSECT HERBIVORY IN NATURAL AND MANAGED ECOSYSTEMS

Copyright Shaker Publishing 2008

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in The Netherlands,

ISBN 978-90-423-0336-2

Shaker Publishing BV St. Maartenslaan 26 6221 AX Maastricht Tel 043-3500424 Fax: 043-3255090 http://www.shaker.nl

Colour cover legend:

Above: Forest (natural) ecosystem:

-left : pure stand (pedunculate oak trees) totally defoliated (susceptible)

- right: undefoliated mixed stand (resistant).

Below: Orchard (managed) ecosystem:

- Psylla-infested caged pear tree (volatile experiment).

Contents

Author's Foreword	8
Preface	11
Acknowledgements	13
Part. I. INTRODUCTION	15
A. General considerations	15
1. Eco-physiological basis of plant resistance to- and induced defence	
against phytophagous arthropods.	15
1.1. Implications of the phytofagy.	15
1.2. Herbivore-insect behaviour and host plant selectivity;	16
1.3. Host plant and herbivore insect variability	17
1.4. Plant species diversity and environmental heterogeneity.	18
2. Ways of fighting insect herbivory	19
2.1. Plant resistance and defence	19
2.2. Host plant specificity and evolutionary strategy of	
phytophagous insects	20
2.3. Compensatory growth	20
3. Theories of resistance and defence in plants	21
4. Terminology: definitions, descriptions, comments	23
4.1. Constitutive resistance	24
4.2. Induced defence	25
4.3. Tolerance	26
4.4. Susceptibility	28
4.5. Suitability	28
5. Infochemical terminology	29
6. Types of induced defence	30
6.1. Direct defence	30
6.2. Indirect defence	30
6.3. Mode of response: systemic or local	31
7. Trophic interactions in terrestrial ecosystems	32
7.1. Generalities	32
7.2. Bitrophic interactions:	34
7.3. Tritrophic interactions	34
7.4. Multi-trophic interactions	35
7.5. Plant to plant communications	39
8. Some considerations on costs and evolution of constitutive resistance	>,
induced defence, tolerance and susceptibility to herbivory in plants.	41

B. Outline of this book:	43
1. Studies and insects	43
1.1. In natural (forest) ecosystems:	43
1.2. In managed (orchard) ecosystems	44
2. Areas, locations and their characteristics	44
2.1. Forest ecosystems	44
2.2. Orchards:	45
2.3. Similarities and differences between forest and orchard ecosyst	S
tems	46
Part II. CONSTITUTIVE RESISTANCE IN NATURAL (FOREST)	
ECOSYSTEMS	49
1. Short introduction	49
2. Review on theories of insect outbreaks	49
3. Critical evaluation of outbreaks hypotheses:	54
3.1. Causes of the outbreaks and their decline	54
3.2. Outbreaks and population cycling.	57
4. Fundamental researches:	58
4.1. Studies	58
4.2. Herbivorous insects	61
4.3. Types of forest stands, tree species and associated	
Lepidopteran populations.	61
4.3.1. Defoliators :	61
4.3.2. Oak leaf miner moth	62
4.3.3. Preliminary conclusions.	63
4.4. Outbreaks of herbivorous Lepidoptera populations in	
studied areas	64
4.4.1. Defoliators	64
4.4.2. Oak leaf miner moth	64
4.5. Damages and their consequences	65
4.5.1. At individual level.	65
4.5.2. At population, community and ecosystem levels	72
4.6. Assembled patterns of variation in abundance and real damage	e
caused by Lepidoptera populations in different type of forest	
ecosystems. Influence of the plant and herbivore variability.	76
5. Constitutive resistance and susceptibility of the trees to the infestation	1
and damage caused by Lepidoptera defoliators in forest stands.	77
5.1. General considerations:	77
5.2. Constitutive resistance and relationships host plant (Quercus	

robur) - Lepidoptera defoliator (Euproctis chrysorrhoea)	
during and between outbreak periods	80
a) Observations on defoliation and selection of	
representative undefoliated (resistant-N) nearby	
defoliated (susceptible-D) trees during outbreaks.	80
b) Differences in phenology and apparency (habitus)	
between resistant (N) and susceptible (D) trees	82
c) Differences in chemical composition of the leaves	
between N and D trees: chemical analysis:	84
6. Ratio of nutrients, minerals and prothidic nitrogen to defensive	
compounds in leaves.	97
7. Consequences for herbivore performance and host plant	100
7.1. Testing the resistance of the host plant to damage	100
7.2. Consequences for host plant: transmission of resistance	
to future generations:	102
8. General pattern of interrelations among secondary (defensive)	
compounds, nutrients and minerals in leaves of resistant (N) peduncul	ate
oak trees (Q. robur), as well as pH and minerals in soil, influencing th	e
development of <i>E. chrysorrhoea</i> caterpillars.	105
Part III: INDUCED DEFENCE IN MANAGED (ORCHARD)	
ECOSYSTEMS	106
Short introduction	106
The system	106
Fundamental studies	107
1. Attraction and aggregation of migrating anthocorid predatory	
bugs to pear trees infested by pear psyllids in field	108
Location	108
1.1. Effect of treatments on prey;	109
1.2. Effect of treatments on anthocorid predatory bugs;	111
1.3. Effect of interrupting volatiles emission.	111
2. Cross-correlation in local populations of pear psyllids and migratory	У
anthocorid bugs	113
2.1. Location	114
2.2. Local abundance of pear psyllid and anthocorid bugs	
and their temporal variation.	114
2.3. Time series and cross-correlation analysis of fluctuations	
in local populations of psyllid prey and anthocorid predator	
populations.	115

3. Volatiles compounds in uninfested and <i>Cacopsylla</i> -infested	
pear tree cultivars and their involvement in attraction of anthocorid	
predators.	119
3.1. Location	119
3. 2. Composition of volatile blends in pear cultivar Conference:	120
3. 2. 1. Variability due to leaf age;	120
3. 2. 2. Variability due to time since colonization.	123
3. 2. 3. Inter-experimental variability.	125
3. 3. Involvement of single compounds in attraction of	
anthocorid predators (olfactometer bioassays)	127
3. 4. Intercultivar variation in emission of volatiles:	128
3.4.1. Variability in number and amounts of compounds	
in uninfested and Cacopsylla-infested leaves	129
3.4.2. Variability in composition of blend per pear cultivar	131
4. Volatiles in honeydew, wild-type pear and other tree species	
surrounding a pear orchard.	139
4.1. Volatile blend from honeydew.	139
4.2. Volatile blend from infested wild-type pear.	140
4.3. Volatiles blend from alder and hauwthorn trees	
surrounding a pear orchard	141
5. Phenolics in leaves of <i>Cacopsylla</i> -infested and mechanically	
damaged pear trees.	143
5.1. Plants, insects, experimental set-up, location and treatments	144
5.2. Infestation level.	144
5.3. HPLC patterns related to natural (psyllids) and/or	
mechanical damage.	144
5.4. Structural elucidation and composition of the "de novo"	
induced phenolic compound 3-O-trans-p-	
Coumaroiltormentic acid	146
5.5. Variation in induction of the phenolic compound per pear	
cultivar : systemic and local.	149
6. Simultaneous direct and indirect induced responses in Psylla-infested	b
pear trees: volatile and phenolic compounds.	155
6.1. Psylla infestation on experimental trees	155
6.2. Volatile compounds	155
6.3. Polyphenols	157
6.4. Do herbivore induced phenolics and volatile compounds	
act synergistically in pear plants?	159
7. Nutrients and minerals in uninfested and <i>Psylla</i> -infested pear	

trees: correlations with secondary compounds.	161
7.1. Content of total protein, chlorophyll, nutrients, minerals,	
and values of C/N ratio	162
7.2. Chlorophyll loss.	162
7.3. Ratio of nutrients and minerals to Cacopsylla-induced	
defensive compounds indicative of plant quality and	
tolerance to herbivory	164
Part. IV. CONCLUSIONS AND RECOMMENDATIONS	170
1. Conclusions	170
1.1. The importance of the constitutive resistance and induced	
direct and indirect defences against herbivorous insects	170
2. Recommendations for future studies.	176
References	179