Baukastenbasierte Entwicklungsmethodik für die rechnerunterstützte Konstruktion von Mikrosystemen

Von der Fakultät für Maschinenbau der Technischen Universität

Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehm igte

Dissertation

von

Dipl Ing Udo Triltsch

aus Bergisch Gladbach

eingereicht am: 13.09.2007

mündliche Prüfung am: 28.11.2007

Referenten: Prof. Dr. rer. nat. S. Büttgenbach

Prof. Dr.-Ing. J. Gausemeier

Vorsitzender: Prof. Dr.-Ing. H.-J. Franke

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Mikrotechnik der Technischen Universität Braunschweig. Sie wurde im Rahmen des Sonderforschungsbereichs 516 "Konstruktion und Fertigung aktiver Mikrosysteme" von der Deutschen Forschungsgemeinschaft (DFG) gefördert.

Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr. rer. nat. S. Büttgenbach. Durch das große Vertrauen, das er mir entgegengebracht hat, konnte ich diese Arbeit in großer Freiheit gestalten. Ferner danke ich dem Vorsitzenden der Prüfungskommission Herrn Prof. Dr.-Ing. Franke und dem Koreferenten Herrn Prof. Dr.-Ing. Gausemeier für das entgegengebrachte Interesse an meiner Arbeit.

Meinem Vorgänger Herrn Dr.-Ing. U. Hansen danke ich für die langjährige Zusammenarbeit. Er war es, der mich schon als Student für das Thema rechnerunterstützter Mikrosystementwurf begeistert hat und mit seinen Ideen und seinem Einsatz die Grundlagen für meine Arbeit geschaffen hat.

Besonders danke ich auch allen Mitarbeitern am Institut für Mikrotechnik (IMT) für die hervorragende Unterstützung in technologischen Fragen und das stets angenehme Arbeitsklima. Zu erwähnen sind hier insbesondere, Herr Dipl.-Ing. B. Hoxhold, Herr Dr.-Ing. M. Feldmann und Herr Dipl.-Ing. A. Phataralaoha, die erheblichen Anteil an der Erarbeitung der Anwendungsbeipiele hatten.

Des Weiteren danke ich Herrn Dipl.-Ing. D. Straube für die gute Zusammenarbeit im Teilprojekt A3 des Sonderforschungsbereichs 516 sowie allen anderen Kollegen des Sonderforschungsbereichs, die mit ihren Anmerkungen und Beiträgen zu dieser Arbeit beigesteuert haben.

Von meinen Studenten möchte ich insbesondere C. Boese, A. Gabor und P. Rechetniak danken, die durch ihre Kreativität und Eigeninitiative viele wichtige Aspekte dieser Arbeit in Form von Studienarbeiten oder Hiwi Tätigkeiten unterstützt haben.

Auf privater Seite danke ich an erster Stelle meinen Eltern, die mich auf meinem bisherigen Lebensweg immer unterstützt haben und mich stets ermutigt haben, meine Ziele konsequent zu verfolgen, ohne dabei die Familie und meine Freunde zu vergessen.

Meiner lieben Frau Judith danke ich für die Geduld, die sie während der Entstehung dieser Arbeit immer wieder mit mir haben musste. Ohne ihre liebevolle Unterstützung wäre die Zeit, die ich mit dieser Arbeit verbracht habe kaum halb so schön gewesen. Meinem Sohn Justus verdanke ich, dass mir einmal mehr vor Augen geführt wurde, wie wichtig die kleinen Dinge im Leben wirklich sind.

Abstract

This work presents a method, which supports designers of microsystems. The main achievement of the system is that it supports the design of single components as well as the development of complex systems that consist of several different materials.

In a first step available product development models are analyzed and the main challenges of MEMS design are discussed. This leads to the generation of a new process model for MEMS design that combines both behavioral modeling and production-related design. The system design forms the common starting point of the model. This process leads from the specifications to a function structure, which will than act as a basis for either the behavioral design path or the production-related design path. Both ways lead to a three-dimensional model of the proposed system, which can be used for further computational analysis.

An analysis of the state-of-the-art in design tools for MEMS showed that most commonly the behavioral modeling is supported by such tools. All relevant methods neglect the design of process and mask layout for non-standard process flows. The area of building block systems mainly focuses on the definition of interfaces between single micro systems.

This leads to the development of the presented system, which closes a gap in the area of component design. By means of building blocks on component level a new way of designing microsystems can be pointed out. The combination of layout and process design makes the reuse of once successfully fabricated elements possible. The system is presented as a software prototype and is attached to a central database.

One important aspect of component design is the simulation of process steps. Especially high-aspect-ratio UV-lithographic patterning requires the use of a simulation tool for the estimation of diffraction effects during the exposure of complex three-dimensional structures. Different levels of microstructures and substrate cause diffraction effects during the exposure, which lead to a distortion of the original mask pattern. The presented simulation tool enables a designer to calculate intensity profiles on the resist surface and to estimate the impact of diffraction effects on the resulting resist pattern. An example is used to show the optimization of mask structures by adding special compensation structures.

The presented building block system still lacks of flexibility regarding the use of evolving technologies. It uses fixed process sequences for single blocks to derive of process flow for the whole system. This leads to the fact that new fabrication processes have to be added to each block separately. To substitute single processes in a process chain a criterion system was developed to assist designers in decision making regarding the use of the best fabrication technology for a given design problem.

Another important aspect is the integration of all tools into one single design environment. Here the fact that commercially available tools can communicate with other modules of the environment by especially designed interfaces was especially addressed. This ensures the consistent use of behavioral modeling and production-related design tools in one workflow.

Different application examples show the capabilities of the presented system. The example of a spiral micro-coil is used to depict the use of the building block system. It focuses on the aspect of deriving a process flow and the layout. Additionally a module for the preliminary design of all coil dimensions and the interface to a finite-element-magnetics tool is presented.

In a second example the use of modules for the design of single components is shown. The membrane of a tactile force sensor acts as an example for deriving an optimized layout structure.

The last application shows, how the system can handle blocks from different technologies to combine them into a complex microsystem. A hybrid micro gripper is used to depict how silicon based components can be combined with technologies from high-aspect-ratio UV-lithography.

The work concludes with a summary and a perspective for further research activities in this area.

Kurzfassung

In der vorliegenden Arbeit wird eine Methodik vorgestellt, die den Entwickler von Mikrosystemen von der Entwicklung einzelner Komponenten bis zum Entwurf komplexer Mikrosysteme, die aus einer Vielzahl von Materialien bestehen können, unterstützt.

Dazu wird zunächst ausgehend von bekannten Vorgehensmodellen der Produktentwicklung ein Vorschlag für ein an die Besonderheiten des Mikrosystementwurfs angepasstes Vorgehensmodell entwickelt welches den verhaltensnahen und den fertigungsnahen Entwurf vereint. Dabei wird insbesondere darauf geachtet, dass es ungeachtet der Ausrichtung der Entwurfsstrategie einen gemeinsamen Einstiegspunkt in das Vorgehensmodell gibt. Der Systementwurf in dem von den Anforderungen eine Funktions-, bzw. Wirkstruktur abgeleitet wird, ist sowohl für den verhaltensnahen als auch für den fertigungsnahen Entwurf relevant. Ausgehend von der Wirkstruktur sieht das Vorgehensmodell dann prinzipiell zwei Wege vor, die zunächst zur Ableitung eines dreidimensionalen Modells, später zum gefertigten Mikrosystem führen.

Die Analyse des Stands der Forschung hat gezeigt, dass die bisher entwickelten Entwurfswerkzeuge hauptsächlich den verhaltensnahen Entwurf unterstützen. Die bekannten Ansätze zur fertigungsnahen Entwurfsunterstützung vernachlässigen weitestgehend den Entwurf des Maskenlayouts. Im Bereich der Baukästen wurden hauptsächlich Systembaukästen aufgebaut, die einzelne Mikrosysteme über definierte Schnittstellen miteinander verbinden.

Daher wurde ein System entwickelt, welches eine Lücke im Bereich des Komponentenentwurfs schließt. Mit Hilfe von Bausteinen auf Komponentenebene kann eine Möglichkeit aufgezeigt werden wie ein kombinierter Layout- und Prozessentwurf die technologieübergreifende Nutzung von bereits erfolgreich gefertigten Lösungselementen ermöglicht. Das System wurde in einen Softwareprototyp umgesetzt und mit einer zentralen Datenbank verbunden.

Einen Aspekt des Komponentenentwurfs spiegelt die detaillierte Simulation konkreter Prozessschritte wider. Gerade im Umgang mit Prozessen der UV-Tiefenlithographie hat sich im Verlauf der Arbeit gezeigt, dass Beugungserscheinungen die strukturgetreue Abbildung der Maskengeometrie verhindern. Es ist daher sinnvoll, die Belichtungsintensität auf der Resistoberfläche vorhersagen zu können, um das Maskenlayout ggf. anzupassen. Daher wurde ein Simulationsprogramm für Beugungseffekte entwickelt, welches aus den erstellten Maskenlayouts eine Topographie der Resistoberfläche ableitet und den Einfluss dieser Topographie auf die Abbildungstreue simuliert.

Um die starre Zuordnung von Bausteinen zu Fertigungsprozessen, wie sie im Datenmodell des Baukastensystems verankert ist aufzuweichen, wurde nach einer Möglichkeit gesucht Fertigungstechnologien an Hand eines Kriteriensystems auswählbar zu machen. Es wird gezeigt, dass aus dem Maschinenbau bekannte Verfahren an die Belange der Mikrosystemtechnik angepasst werden können und so zur gezielten Auswahl geeigneter Technologien führen.

Ein weiterer wichtiger Aspekt der Arbeit ist die Integration der einzelnen Module in eine geschlossene Entwicklungsumgebung. Hier wurde darauf geachtet, dass kommerzielle Werkzeuge mit den entwickelten Modulen über definierte Schnittstellen Daten austauschen und so ein geschlossenes System für den verhaltens- und fertigungsnahen Entwurf zur Verfügung steht. Der Entwickler wird über ein Projektplanungs und -management Werkzeug durch die einzelnen Entwurfsschritte geführt.

Abschließend zeigen Anwendungsbeispiele verschiedene Aspekte des Systems. Am Beispiel einer doppelllagigen Mikrospule wird das Vorgehen beim Entwurf mittels Baukastensystem verdeutlicht. Diese Anwendung soll vor Allem detailliert die Arbeitsweise des Programms im Hinblick auf die Ableitung von Gesamtlayout und prozesskette verdeutlichen. Des Weiteren wird hierbei ein Modul zum Grobentwurf von planaren Mikrospulen eingesetzt und die Anbindung an ein Finite Elemente Magnetics Programm vorgestellt.

Ein zweites Anwendungsbeispiel verdeutlicht den Einsatz von Modulen zum Komponentenentwurf, falls für gewünschte Funktionen keine Bausteine im System vorgehalten werden. Die Membran eines Kraftsensors wird herangezogen, um die Vorgehensweise des Moduls zur Optimierung von Masken zu illustrieren.

In der letzten Anwendung wird die Fähigkeit des Systems herausgestellt technologieübergreifende Bausteine zu einem neuen, komplexen Mikrosystem zusammenzuführen. Das Beispiel eines Mikrogreifers, der Komponenten aus der Siliziumtechnologie und der UV-Tiefenlithographie verbindet zeigt wie vorteilhaft die technologieübergreifende Entwicklung sein kann.

Die Arbeit schließt mit einer Zusammenfassung und einem Ausblick für zukünftigen Forschungsbedarf ab.

Inhalt

V	orwoi	·t		3
A	bstra	et		3
K	Curz fa:	ssun	g	7
1	Ein	leitu	ing	1
2	En	twicl	klung mikrotechnischer Systeme	7
	2.1	Det	finition verwendeter Begriffe	7
	2.2	Ana	alyse des Ist-Zustandes	8
	2.3	An	forderungen an eine Entwicklungsmethodik	11
	2.4	Bel	kannte Vorgehensmodelle für die Produktentwicklung	11
	2.4	. 1	Allgemeines Vorgehensmodell nach VDI-Richtlinie 2221	12
	2.4	.2	Kreismodell für den fertigungsnahen Entwurf	13
	2.4	.3	Brezel-Modell der Mikrotechnik	14
	2.4	.4	Vorgehensmodell zur Entwicklung mechatronischer Systeme	16
	2.5	Das	s Q-Modell - Ein neuer Ansatz	18
3	Sta	nd d	er Forschung und Technik	20
	3.1	Ent	wicklungsumgebungen für den Mikrosystementwurf	20
	3.1		PRINCE	
	3.1	.2	Verhaltensnahe Entwurfswerkzeuge am Beispiel von CoventorWard	e TM 21
	3.2	Baı	ukastensysteme in der Mikrotechnik	23
	3.2	. 1	Membran-Baukasten	23
	3.2	.2	SIMOD - Modell-Baukasten für modulare Mikrosysteme	24
	3.2	.3	Systembaukästen	24
	3.3	Dis	kussion der Systeme und Abgrenzung	25
4	Ba	ukas	tenbasierte Mikrosystementwicklung	26
	4.1	Ana	alyse von Funktionselementen	27
	4.2	Ent	wicklung eines Datenmodells	30
	4.2	.1	Speicherung der Layoutdaten	31

	4.2.2	Speicherung einer Dokumentation	32
	4.2.3	Speicherung von Funktionen	32
	4.2.4	Speicherung von Prozessketten	33
	4.2.5	Repräsentation des Datenmodells auf Anwendungsebene	37
	4.3 I	Datenbankanbindung	38
	4.3.1	Objektrelationales Mapping	39
	4.4 I	Definition von Bausteinen	41
	4.5	Zusammenführen von Prozessfolgen und Anbindung an RuMtoPf	43
	4.6 I	Entwicklung des Programmkerns	44
	4.6.1	Grundlagen zur Implementierung	44
	4.6.2	Übersicht über die Programmstruktur	47
5	Proz	esssimulation	50
	5.1	Optical-Proximity-Correction	52
		Simulationssoftware	
	5.2.1	Beugungstheoretische Grundlagen	
	5.2.2		
	5.2.3	Programmstruktur	
	5.2.4		
		Beispiel	
		Fazit	
,			
6		ertung und Auswahl von Technologien	
	6.1	Stand der Forschung	
	6.1.1	MADM-Verfahren zur Entscheidungsunterstüztzung	
	6.1.2	8 81 8	
	6.1.3	Methoden der operativen Technologieplanung	
	6.1.4	,	
	6.2	Anforderungen an eine Bewertungsmethodik	
	6.2.1	Vergleich lithographiebasierter und sub-feinwerktechnischer Verfah	
	6.3	Ansätze für eine Methodik zur Bewertung und Auswahl	73
	6.3.1	Bewertung mikrotechnischer Technologien	73

	6.4	Generierung von mikrotechnischen Technologieketten	79
	6.5	Beispiel	80
	6.5.	1 Zusammenführen der Aktivitätsparameter	81
	6.5.	2 Regelbasierte Auswertung	85
	6.6	Fazit und Handlungsbedarf	86
7	Ein	bindung in die Entwicklungsumgebung	88
	7.1	Nutzerführun g	90
8	Anv	wendungsbeispiele	92
	8.1	Design einer Spiralspule mit Flussführung	92
	8.1.	1 Grobentwurf	92
	8.1.	2 Auswahl geeigneter Bausteine	93
	8.1.	3 Definition der Parameter und Anordnung im Editor	94
	8.1.	4 Zusammenführen der Prozessketten	97
	8.1.	5 Exportieren des Layouts und Erzeugen des 3D-Modells	100
	8.2	Optimierung eines Kraftsensors	101
	8.2.	1 Auswahl geeigneter Bausteine	102
	8.2.	2 Validierung des Entwurfs	103
	8.2.	3 Optimierung des Entwurfs	105
	8.3	Entwicklung eines Mikrogreifers	110
9	Zus	ammenfassung und Ausblick	114
1() Lite	raturverzeichnis	117
	10.1	Eigene Veröffentlichungen	117
	10.2	Weiterführende Literatur	119
A	nhang		
A	Erv	veiterungen der TCL Standardbefehle]
	A.a	Allgemeine Parameter	
	A.b	Layouteingabe	
	rect		Ţ

cir	cleI
line	eII
pat	hII
arc	IV
A.c	Objekte manipulierenV
mii	тогV
mo	veV
del	eteVI
sel	ectVI
uns	selectVII
res	caleVII
boo	oleanIX
A.d	LayersteuerungIX
lay	erIX
A.e	ZellenX
cel	1X
ado	ICellX
arr	ayX
A.f	BausteineXII
ado	iProcParameterXII
B Ve	rwendete Elemente von EXPRESS-GXIV
B.a	Atomare TypenXIV
B.b	Entitäten bzw. ObjekteXV
B.c	AufzählungenXV
B.d	ReferenzenXV
B.e	AttributrelationenXV
B.f	VererbungsrelationenXV
B.ø	Beispiel XV

Verzeichnis der Abkürungen

μTOAST	Micro Tolerance Analysis and Synthesis Tool
ACIS	Alan, Charles, Ian's System (geometrischer Modellierungskern ver-
	schiedener CAD-Werkzeuge)
BICEP ³ S	Braunschweigs Integrated CAD-Environment for Product- and Proc-
	essplanning and Simulation
BICEPS	Braunschweigs Integrated CAD-Environment for Process Simulation
CFD	Computer Fluid Dynamics
DXF	Data Exchange Format
ESP	Elektronische Stabilitätsprogramm
FEM	Finite Elemente Methode
GUI	Graphical User Interface
KOH	Kaliumhydroxid
LIP	Lean Integration Platform
MADM	Multi Attribute Decission Making
MDI	Multi Document Interface
MEMS	Micro-Electro-Mechanical System
MST	Mikrosystemtechnik
OMAGA	Optimierung vom Masken mittels genetischer Algorithmen
PROMPT	Projektmanagement und -planungstool
RDBMS	Relationales Datenbank-Management-System
RUMTOPF	Rechnerunterstützte Modellierung technologieorientierter Prozess-
SAT	Standard ACIS Text
SPOPT	Spulen Optimierung
SQL	Structured Query Language
SUZANA	Simulation mittels zellulären Automaten des nasschemischen Ätzens
TCL	Tool Command Language
TMAH	Tetramethylamoniumhydroxid
UMM	Unigraphics Model Manager
VDI	Verein Deutscher Ingenieure
VisVSA	Visual Variation Systems Analysis
VLSI	Very Large Scale Integration
VM	Virtuelle Maschine
XML	Extensible Markup Language

Verzeichnis der Formelzeichen und Symbole

A_Q	Amplitude der Quelle	
C(w), S(w)	Fresnel-Integrale	
cos δ	Neigungsfaktor	
d _x	Abstand	
E_p	Störung einer elektromagnetischen Welle	
I_0	Ausgangsintensität	
Ip	Intensität im Punkt P	
k	Wellenzahl	
\mathbf{w}_{j}	Gewicht des Kriteriums j	
r _{ij}	Erfüllungsgrad der Alternative i bezüglich des Kriteriums j	
A_{i}	Aktivitätsparameter der Alternative i	
μ	Zugehörigkeitsfunktion	
X _s	x-Koordinate des Schwerpunktes	
α,β,γ,δ		
a,b,c,d	Basisvariablen von Fuzzy-Zahlen	
E,F,G,H		