Lehrstuhl für Bauinformatik Fakultät für Bauingenieur- und Vermessungswesen Technische Universität München

An anisotropic *p*-adaptive method for linear elastostatic and elastodynamic analysis of thin-walled and massive structures

Dominik Nikolaus Scholz

Vollständiger Abdruck der von der Fakultät für Bauingenieur- und Vermessungswesen der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:

Prüfer der Dissertation:

Univ.-Prof. Dr.-Ing., Dr.-Ing. habil. G. H. Müller

- 1. Univ.-Prof. Dr.rer.nat. E. Rank
- Associate Prof. Z. Yosibash, D. Sc. Ben-Gurion University of The Negev / Israel

Die Dissertation wurde am 17.11.2005 bei der Technischen Universität München eingereicht und durch die Fakultät für Bauingenieur- und Vermessungswesen am 27.01.2006 angenommen.

Berichte aus der Bauinformatik

Dominik Scholz

An anisotropic *p*-adaptive method for linear elastostatic and elastodynamic analysis of thin-walled and massive structures

> Shaker Verlag Aachen 2007

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Zugl.: München, Techn. Univ., Diss., 2006

Copyright Shaker Verlag 2007

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 978-3-8322-6006-4 ISSN 1612-6262

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9 Internet: www.shaker.de • e-mail: info@shaker.de

Zusammenfassung

Basierend auf einer Hexaederelement-Formulierung, die eine anisotrope Wahl der Polynomgrade für die lokalen Richtungen sowie die Komponenten des kartesischen Verschiebungsvektors erlaubt, wird in dieser Arbeit eine p-adaptive Methode für linear elastostatische sowie linear elastodynamische Probleme vorgeschlagen. Die p-adaptive Methode für statische Probleme wird durch einen anisotropen, hierarchischen Fehlerindikator gesteuert, der auf einer lokalen Projektion der Lösung aus einem gegebenen Ansatzraum in einen reduzierten, hierarchisch eingebetteten Raum beruht, wobei die Differenz in der Dehnungsenergie minimiert wird. Die p-adaptive Methode für dynamische Problemstellungen basiert auf der Anpassung der Polynomgrade mit dem Ziel, die dominanten Eigenfrequenzen genau darzustellen, die aus einer transienten Vorabrechnung mit grober Diskretisierung erhalten werden. Der hierfür entwickelte p-adaptive Eigenwertlöser wird durch einen analog konstruierten, lokal berechneten, anisotropen, hierarchischen Fehlerindikator kontrolliert, um somit den RAYLEIGH Quotienten zu minimieren. Für alle in dieser Arbeit untersuchten Beispiele zeigen die padaptiven Diskretisierungen im Vergleich zu uniformer p-Verfeinerung eine deutlich höhere Effizienz sowie höhere asymptotische Konvergenzraten. Daher kann die Methode als Abhilfe von einer wesentlichen Schwäche uniformer h- und p-Versionen gesehen werden, nämlich den oftmals geringen Konvergenzraten im asymptotischen Bereich, im Besonderen bei irregulären Lösungen. Somit können äußerst effiziente, strikt drei-dimensionale Diskretisierungen für Strukturen gefunden werden, die sowohl aus dünnwandigen als auch massiven Teilen bestehen.

Abstract

An anisotropic *p*-adaptive method for linear elastostatic and linear elastodynamic problems is proposed, based on a high-order hexahedral element formulation allowing for an independent adjustment of the polynomial degrees for different local directions and different components of the cartesian displacement vectors. The *p*-adaptive method for static problems is driven by an anisotropic hierarchic error indicator based on the idea of locally projecting the solution from a given Ansatz space to a reduced, hierarchically nested space, minimizing the difference in strain energy. The *p*-adaptive method for dynamic problems is based on adjusting the polynomial degrees to achieve an optimal representation of the dominant eigenfrequencies, obtained from an initial transient computation with a coarse discretization. The *p*-adaptive eigensolver required for this purpose is driven by an analogously constructed, locally computed, anisotropic hierarchic error indicator, thus minimizing the RAYLEIGH quotient. For all numerical examples investigated herein, the *p*-adaptive discretizations show a considerably higher efficiency and higher rates of convergence compared to uniform p-refinement. This method can accordingly be understood as a remedy for one basic problem of uniform h- and p-versions, i.e. the possibly poor asymptotic behavior, especially in presence of any irregularities in the solution. As a result, it is possible to obtain an efficient, fully three-dimensional discretization of both thin-walled and compact parts of structures.

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Bauinformatik der Fakultät Bauingenieur- und Vermessungswesen der Technischen Universität München (2000 – 2005). Die Ideen zur Arbeit wurden in dem Projekt Fluid-Struktur-Wechselwirkungen im Bauwesen — Numerische Simulation mit Höchstleistungsrechnern (FLUSIB) des Kompetenznetzwerkes für wissenschaftliches Hoch- und Höchstleistungsrechnen in Bayern (KONWIHR) und dem Projekt Elemente hoher Ordnung zur Struktursimulation in der Fluid-Struktur-Wechselwirkung der DFG-Forschergruppe 493 (Fluid-Struktur-Wechselwirkung: Modellierung, Simulation, Optimierung) entwickelt und umgesetzt.

An erster Stelle möchte ich mich bei meinem Doktorvater Prof. Ernst Rank bedanken, bei dem ich beobachten und lernen durfte, wie er Probleme ganzheitlich und umfassend betrachtet und diese dabei trotzdem auf das Wesentliche reduziert, und ich bewunderte stets seinen Ideenreichtum bei der Problemlösung. Begeistert war ich von seiner großen Begeisterungsfähigkeit. Trotz seines vollen Terminkalenders schaffte er immer Freiräume zur ausführlichen und konstruktiven Diskussion, wenn Ziele wieder einmal unerreichbar schienen.

Bei Prof. Zohar Yosibash möchte ich mich bedanken für die Übernahme des Zweitgutachtens. Die Gespräche mit ihm und seine kritischen und detaillierten Anmerkungen haben einen signifikanten Gewinn für diese Arbeit bedeutet.

Prof. Gerhard Müller hat auf unkomplizierte Art den Vorsitz der Prüfung übernommen und während dieser eine angenehme Atmosphäre geschaffen.

Mein besonderer Dank gilt Alexander Düster für die ausgezeichnete wissenschaftliche und überaus geduldige Betreuung. Er hat diese Arbeit wesentlich mit definiert.

Bei Roland Krause möchte ich mich bedanken, der mich während meines Auslandaufenthalts zur Diplomarbeit in St. Louis, Missouri, USA für das Gebiet der mechanischen Simulation begeistern konnte und mich dort wie ein Familienmitglied aufgenommen hat.

Bei allen Kolleginnen und Kollegen — Hanne Cornils eingeschlossen — möchte ich mich bedanken für das ausgesprochen freundschaftliche Lehrstuhlklima und die zahlreichen Diskussionen. Zu groß war bei manchen der Beitrag zum Gelingen dieser Arbeit, dass sie nicht zu erwähnen sträflich wäre: Besonderer Dank geht daher (in alphabetischer Reihenfolge) an Ansgar Halfmann, Ulrich Heißerer, Stefan Kollmannsberger, Alexander Muthler, Andreas Niggl, Andreas Rabold, Matthias Schleinkofer, Christian Sorger und Christoph van Treeck.

Meine Eltern Gabriele und Uwe und meine Geschwister Annette und Johannes haben mir immer gezeigt, wo ich gut aufgehoben bin.

Bei Vera möchte ich mich für die vielen wertvollen Ratschläge und auch für ihre Zuwendung bedanken, beides machte die Mühen des Zusammenschreibens erträglich.

Contents

1	Intr	roduction	1		
2	Bas	sic continuum mechanics	5		
	2.1	Kinematics	5		
	2.2	Stress and equilibrium	7		
	2.3	Material models	10		
	2.4	Boundary and initial conditions	10		
	2.5	Variational formulation	10		
	2.6	Linearization	11		
	2.7	Important simplifications	13		
		2.7.1 Linear elastostatic problems:			
		Equivalence to minimization of potential energy	13		
		2.7.2 Linear elastodynamic problems:			
		Harmonic vibrations, minimum principle of eigenfrequencies	15		
		2.7.3 Models for plates and shells	17		
3	Discretization 20				
	3.1	Spatial discretization	20		
		3.1.1 Hierarchic high order anisotropic hexahedral elements	21		
		3.1.2 Geometric mapping: The blending function method	25		
		3.1.3 Spatial discretization of the weak form	29		
		3.1.4 Important simplifications	32		
	3.2	Time discretization	37		
		3.2.1 Implicit time integration methods based on NEWMARK's formulae	38		
	3.3	Numerical example	40		
4	Erre	or control and adaptive methods	43		
	4.1	Adaptivity for time-independent problems	46		
		4.1.1 A priori error estimates and convergence rates	46		
		4.1.2 A posteriori error estimates	55		
		4.1.3 Notes on nonlinear problems	64		
		4.1.4 Strategies for adapting the discretization	64		
	4.2	Adaptivity for time-dependent problems	65		
		4.2.1 Error of temporal discretization	67		
		4.2.2 Spatial error	70		
		4.2.3 Adaptive strategies	71		

	4.2.4 Transfer of history variables	74
	4.3 Adaptivity for eigenvalue problems	77
	4.3.1 A priori estimates for eigenvalue problems	77
	4.3.2 A posteriori estimates for eigenvalue problems and adaptivity	78
	4.4 Model adaptivity	79
5	An anisotropic <i>p</i> -adaptive method for elastostatic problems	82
	5.1 The stopping criterion: Hierarchy-based extrapolation	83
	5.2 An anisotropic hierarchic error indicator	84
	5.2.1 An implicit anisotropic hierarchical error indicator on element level	87
	5.2.2 Explicit anisotropic hierarchical error indicators on element level	90
	5.3 The <i>p</i> -adaptive strategy	92
	5.4 Numerical examples	93
	5.4.1 Clamped plate	93
	5.4.2 Cylindrical shell	98
	5.4.3 Hemispherical shell with stiffener	103
	5.4.4 Spring-back analysis of thin metal sheet (S-rail)	104
	5.4.5 Bomarka	109
	0.T.0 Itematks	100
6	An anisotropic <i>p</i> -adaptive method for elastodynamic problems	111
	6.1 An anisotropic <i>p</i> -adaptive hierarchic eigensolver	113
	6.1.1 An anisotropic hierarchic error indicator	113
	6.1.2 A <i>p</i> -adaptive strategy for the eigenvalue problem	115
	6.2 A <i>p</i> -adaptive strategy for time-dependent problems	116
	6.3 Numerical examples	120
	6.3.1 Clamped plate	120
	6.3.2 Cantilever	124
7	Summary	135
Δ	Ansatz spaces for high order elements	137
	A 1. The trunk space $S^{p_{\xi}, p_{\eta}, p_{\zeta}}(O^{h})$ for heyabedral elements	137
	A 2 The tensor product space $S_{ts}^{p_{\xi},p_{\eta},p_{\zeta}}(\Omega^{h})$ for heyabedral elements	138
	A 3 The anisotropic tensor product space $S^{p,p;q}(O^h)$ for havabedral elements	130
	$(32_{\rm st})$ for hexalicitial clements	105
в	The blending function method for hexahedral elements	141
	B.1 Edge blending (from [79])	141
	B.2 Face blending (from [79])	142
С	Definition of tangential and normal vectors for hexahedral elements	143
	Bibliography	143