Gezielte dreidimensionale Zellkultivierung auf strukturierten lyophilisierten Kollagenträgern

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Melanie Kuberka

aus Herne

Berichter: Univ.-Prof. Dr.rer.nat. Günter Rau Univ.-Prof. Dr.-Ing. Michael Modigell

Tag der mündlichen Prüfung: 25. September 2006

D 82 (Diss. RWTH Aachen)

Berichte aus der Biomedizinischen Technik Herausgeber: Univ.-Prof. Dr. rer. nat. G. Rau

20

Melanie Kuberka

Gezielte dreidimensionale Zellkultivierung auf strukturierten lyophilisierten Kollagenträgern

Helmholtz-Institut

für Biomedizinische Technik an der RWTH Aachen

Shaker Verlag

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Aachen, Techn. Hochsch., Diss., 2006

Copyright Shaker Verlag 2007 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-5979-2 ISSN 1430-7316

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Helmholtz-Institut für Biomedizinische Technik der RWTH Aachen. Mein besonderer Dank gilt Herrn Prof. Dr. rer. nat. Rau, der mir als Institutsdirektor die Möglichkeit eröffnet hat, diese Arbeit durchzuführen, und der mich dabei jederzeit konstruktiv unterstützt und gefördert hat. Bei Herrn Prof. Dr.-Ing. Modigell bedanke ich mich für die Mitbetreuung und Begutachtung meiner Arbeit sowie die Übernahme des Korreferats.

Das Gelingen dieser Arbeit basiert auf der konstruktiven und menschlichen Arbeitsatmosphäre innerhalb des Arbeitsbereichs Kryobiologie, zu der alle Kolleginnen und Kollegen beigetragen haben. Besonders danke ich dabei Dr.-Ing. Ingo Heschel, der auch über seine Zeit als Gruppenleiter hinaus die Arbeit maßgeblich durch seine Ideen und seine fundierten wissenschaftlichen und praktischen Kenntnisse begleitet hat. Sehr wichtig für mich waren unsere intensiven fachlichen Diskussionen, die von konstruktiver Kritik und visionärem Denken gleichermaßen geprägt waren. Der Gruppenleiterin Dr.-Ing. Birgit Glasmacher, MSc. danke ich für die Ermöglichung der Arbeit.

Mein besonderer Dank gilt Sigrid Lüneberger für ihren unermüdlichen Einsatz im Labor und ihre vielen motivierenden Anregungen und wertvollen Hinweise zur praktischen Durchführung der Versuche. Bärbel Elbers danke ich für ihre stets zuverlässige und hochmotivierte Unterstützung bei vielen Laborarbeiten. Außerdem danke ich Herrn Dipl.-Ing. Peter Schwindke für seine Hilfe bei elektrotechnischen und messtechnischen Fragestellungen sowie für seinen unermüdlichen Einsatz, mit dem er das Mikroprozessorsystem zur Messwerterfassung für die Bioreaktorversuche entwickelt hat. Die engagierten Studierenden Inga Bernemann, Stefan Eick, Marc Goodger, Erika Suortti, Ulrich Nolten, Ugur Erdogan und Dorothea Brüggemann haben entscheidende Bausteine zu meiner Arbeit beigetragen. Den Mitarbeitern der Mechanischen Werkstatt danke ich für die Fertigung der Versuchsaufbauten.

Mein Lebenspartner Burkhard Halfmann hat mich während der gesamten Zeit nicht nur mit viel Verständnis und unendlicher Geduld, sondern auch durch zahlreiche fachliche Diskussionen sowie konstruktive Anregungen unterstützt.

Dem Interdisziplinären Zentrum für Klinische Forschung "BiOMAT" (BMBF-Projektnr. $01~\mathrm{KS}~9503/9$) danke ich für die Teilfinanzierung des Forschungsvorhabens.

Essen, im Dezember 2006

Melanie Kuberka

Inhaltsverzeichnis

1	Einl	eitung		1
2	Koll 2.1 2.2 2.3	Aufba	mmen von Kollagen u von Kollagenmolekülen udungsgebiete für Kollagen Allgemeine Anwendungsgebiete Lyophilisiertes Kollagen als Trägermatrix Poröse 3D-Kollagenträger für das Tissue Engineering	7 8 11 11 12
3	Gez	ielte S	trukturierung von Kollagenträgern	17
	3.1	Gerich	ntete Erstarrung von Kollagensuspensionen	17
		3.1.1	Nicht-planare Erstarrungsfront	19
		3.1.2	Gradientenfriertisch nach dem Bridgman-Verfahren	22
		3.1.3	Gerichtete Erstarrung mit dem Power-Down-Verfahren	25
	3.2	Lichtn	nikroskopische Untersuchungen zur Variation der Kristallstruktur	27
		3.2.1	Variation der Frierparameter	27
		3.2.2	Ergebnisse der Mikroskopstudie	28
	3.3	Herste	ellung von 3-dimensionalen Kollagenträgern unter Variation der	
			30	
		3.3.1	Gefriertrocknung von Kollagenträgern	30
		3.3.2	Untersuchung der Trägerstruktur	31
	3.4	Unter	suchung spezieller Materialeigenschaften	39
		3.4.1	Porosität	39
		3.4.2	Mechanische Festigkeit	41
		3.4.3	Denaturierungstemperatur	44
		3.4.4	Degradationsverhalten	48
		3.4.5	Sterilisierbarkeit	52
	3.5	Disku	ssion	54
4	Stat		Zellkultivierung auf Kollagenträgern	61
	4.1	Kultiv	vierungstechniken	61
		4.1.1	J	62
		4.1.2	Dynamische Systeme	62

Inhaltsverzeichnis

		4.1.3	Zellkultur von Fibroblasten	. 63
	4.2	Besied	llung und Kultivierung von Kollagenträgern	. 63
	4.3	Prolife	erationsbewertung	. 66
		4.3.1	MTT-Test	. 66
		4.3.2	Histologie	. 72
		4.3.3	Immunhistochemie	. 74
	4.4	Diskus	ssion	. 77
5	Bio	reaktor	entwicklung zur 3D-Zellkultivierung	79
	5.1		ndung von verschiedenen dynamischen Kultivierungssystemen	. 79
	5.2	Ausleg	gung und Konstruktion des Bioreaktors	
		5.2.1	Einlaufgeometrie	. 83
		5.2.2	Fixierung des Schwammes	. 84
	5.3	Konze	ptionierung des Kreislaufs	. 85
		5.3.1	Der Kreislauf	. 85
		5.3.2	Dimensionierung des Schlauchsystems	
		5.3.3	Datenerfassung	. 90
	5.4	Sterili	sation und Biokompatibilität der Systemkomponenten	. 92
		5.4.1	In vitro Materialuntersuchung mit Zellen	
		5.4.2	Ergebnisse der in vitro Untersuchungen	
	5.5	Druck	verlusttheorie des Bioreaktors	. 94
		5.5.1	Fließverhaltens des Zellkulturmediums	. 94
		5.5.2	Flüssigkeitsströmungen in porösen Materialien	. 96
		5.5.3	Theoretische Abschätzung des Druckverlusts über den Bioreakt	or 99
		5.5.4	Modellierung des Druckverlusts mit steigendem Zellwachstum	104
		5.5.5	Untersuchungen zur Bestimmung des realen Druckverlusts .	. 107
	5.6	Diskus	ssion	. 110
6	Stu	dien zu	ır dynamischen Kultivierung im Bioreaktorkreislauf	113
	6.1	Besied	llung und Kultivierung	. 113
	6.2		rerterfassung während der Kultivierungsversuche	
		6.2.1	Sauerst off partial druck	. 115
		6.2.2	Kohlendioxidpartialdruck	. 116
		6.2.3	PH-Wert	. 117
		6.2.4	Temperatur	. 117
		6.2.5	Ergebnisse der Messwerterfassung	. 118
	6.3	Prolife	erationsbewertung	. 120
		6.3.1	MTT-Test	. 121
		6.3.2	Histologie und Immunhistochemie	. 122
		6.3.3	Vergleich der statischen und dynamischen Kultivierung	
	6.4	Diskus	ssion	. 125
7	Zus	ammer	nfassung und Ausblick	131

8	Literaturverzeichnis			
Α	Verwendete Materialien, Chemikalien und Lösungen	149		
В	Por simetrieverfahren B.1 Direkte Porosimetrieverfahren – Mikroskopische Untersuchungen B.2 Indirekte Porosimetrieverfahren – Dichtebestimmung B.2.1 Schwebeverfahren B.2.2 Dichtesäule B.2.3 Gas-Pyknometrie B.3.1 Gas-Pyknometrie B.3.1 Quecksilber-Porosimetrie mittels Fluidintrusion bzwextrusion B.3.1 Quecksilber-Porosimetrie B.3.2 Extrusionsporosimetrie B.3.3 Porositätsbestimmung durch Permeabilitätsmessungen B.3.4 Gasadsorption	151 151 152 152 152 153 153 155 155		
С	Methoden der Zellkultur C.1 Ansetzen der Zellkulturmedien C.2 Zellkultur von Fibroblasten C.2.1 Isolation von Fibroblasten C.2.2 Passagieren von adhärenten Zellen C.2.3 Bestimmung der Zellzahl mit Trypan-Blau C.3 MTT-Test C.4 Histologie C.5 Immunhistochemie C.5.1 Monoklonale Antikörper C.5.2 APAAP-Methode C.5.3 Verwendete Antikörper C.5.4 Kryofixierung	157 157 157 158 158 159 160 160 160 161		
D	Konstruktionszeichnungen	163		
Ε	Übersicht über verschiedene Bioreaktorsysteme	171		
F	Zusätze zu den Modellen F.1 Nomogramme zur Ermittlung der dimensionslosen Konzentration F.2 Berechnungen zur Modellierung des Druckverlusts mit steigendem Zellwachstum	175 175 177		

Inhaltsverzeichnis

Abbildungsverzeichnis

2.1 2.2 2.3	Schema der Kollagenbildung durch Fibroblasten [Kol91]	8 9
	schwamms [vHe01a]	16
3.1	Schema der Gefriertrocknung von Kollagensuspensionen.	18
3.2	Erklärung des Auftretens einer konstitutionell unterkühlten Zone vor einer fortschreitenden planaren Eisfront [Kur89, Nun93]	20
3.3	Kristallographische Achsen im Eiskristall	22
3.4	Prinzipskizze des Bridgman-Kryomikroskops (nach [Nun93])	23
3.5	Prinzipskizze der Power-Down-Anlage (nach [Hes96])	26
3.6	Zellulare Eiskristallmorphologie nach der gerichteten Erstarrung einer	
	Kollagensuspension	27
3.7	Einfluss der Eisfrontgeschwindigkeit v auf die Eiskristallgröße (n=100).	29
3.8	Einfluss des Temperaturgradient G auf die Eiskristallgröße (n=100).	29
3.9	Einfluss der Kollagenkonzentration auf die Eiskristallgröße (n=100).	29
3.10	Gefriergetrockneter Kollagenschwamm mit den Abmaßen 80 × 80 ×	
	$10 mm^3$	32
	$Kollagenschwammstruktur\ im\ Durchlichtmikroskop\ (100x).\ \ldots\ \ldots$	32
3.12	Abhängigkeit der Porengröße von der Position im Kollagenscaffold und	
	den Frierparametern Kühlrate B sowie Temperaturgradient G	33
3.13	Abhängigkeit der Porengröße von der Position im Kollagenscaffold bei	
	Nicht-Erfüllung des Gradientenkriteriums.	34
3.14	Vertikaler Schnitt durch einen Kollagenschwamm, der von beiden Sei-	
	ten erstarrt wurde ($G=20~K/cm,~B=3,6~K/min$) (links). Verschie-	
	bung der Kollagenfasern in Richtung der c-Achse während der gerich-	0.5
0.15	teten Erstarrung (rechts)	35
3.15	Vertikale Schnitte durch Kollagenschwämme. Links: gesamte Höhe (16x);	0.0
0.10	rechts: Detailaufnahme (100x)	36
	Horizontaler Schnitt durch einen Kollagenschwamm $(S = 51 \mu\text{m})$.	37
3.17	REM-Aufnahme der Struktur eines Kollagenschwammes $(S = 98 \mu m)$,	9.0
9 10	der über Eck geschnitten wurde	38
5.18	Abmaße einer Schulterprobe [AST79] (links). Kollagenschwammpro-	40
	ben (rechts): vor und nach einem Zugversuch.	42

3.19	Spannungs-Dehnungs-Diagramm eines Zugversuchs mit einer Kollagenschwammprobe (links oben). Reißdehnung (rechts oben), Zugfestigkeit (links unten) und E-Modul (rechts unten) in Abhängigkeit von der	
	Porengröße.	43
3.20	Links: Prinzipskizze der DSC. Rechts: Kollagenschwammproben vor und nach einem DSC-Experiment	45
3.21	DSC-Thermogramm zur Bestimmung der Denaturierungstemperatur von Kollagenschwämmen.	47
3.22	Dauer bis zur kompletten Degradation von Kollagenschwammproben durch bakterielle Kollagenase.	50
3.23	Verbleibendes Gewicht nach 1, 3 und 5-stündiger Kollagenasebehandlung.	51
	Einfluss des Sterilisationsverfahrens auf die Porengröße in gefriergetrockneten Kollagenschwämmen.	53
3.25	Strukturveränderungen von zuvor rechteckigen Kollagenschwämmen nach der Plasmasterilisation	54
4.1	Besiedlungskammer zur Besiedlung von Kollagenscaffolds mit Zellen (links: offen; rechts: geschlossen).	64
4.2	Zunahme der Oberflächenfärbung durch MTT-Reduktion von Fibroblasten der besiedelten Kollagenschwämme von d1 nach d7	68
4.3	Einfluss verschiedener Besiedlungsmethoden auf das Wachstum von Fibroblasten in Kollagenschwämmen über einen Zeitraum von $21\ {\rm Tagen}.$	70
4.4	HE-gefärbte Histologieschnitte von mit unterschiedlichen Methoden besiedelten Kollagenschwämmen an d7	73
4.5	Vimentin-Nachweis an mit der Besiedlungskammer (d7) und der Spritze besiedelten Kollagenschwämmen (d21) (100-fach Vergrößerung)	76
4.6	Chondroitinsulfat-Nachweis an einem mit der Besiedlungskammer besiedelten Kollagenschwamm an d14 (100-fach Vergrößerung)	76
5.1	Auslegungsschema des Bioreaktors.	82
5.2	Allmähliche Rohrerweiterung (Übergangsdiffusor) [Tuc80]. a: Schema; b: Strömungsaufnahme mit abgelöster Strömung bei Überschreitung	
- 0	von $2\vartheta_D^*$	84
$5.3 \\ 5.4$	Schema zur Fixierung des Schwammes	84 86
$\frac{5.4}{5.5}$	Blasenfalle, die an einen BR über Silikonschläuche angeschlossen ist.	86
5.6	Benutzeroberfläche des LabVIEW®-Programms zur Messwerterfassung	00
	bei den Versuchen zur dynamischen Kultivierung von zellbesiedelten	0.0
5.7	Kollagenschwämmen im BR-System	90
5.7	and 3 (links) und unterhalb der PP- und PTFE-Siebe and 7 (rechts). Vergleich des Zellwachstums auf verschiedenen Materialien mittels MTT-	93
5.8	Test (n=3, 4-fach Bestimmung)	93

э.9	ser in Abhängigkeit von der Temperatur	95
5.10	Kapillarrohrmodell (links) und Rechteckkapillarmodell (rechts) zur nä-	00
	herungsweisen Beschreibung der Kollagenschwammstruktur.	96
5.11	Ersatz der realen Poren im Kollagenträger durch ein Kapillarmodell.	97
	Schematische Darstellung des Bioreaktors.	100
5.13	Abhängigkeit des Druckverlusts von der Porengröße	104
	Modellierte Abhängigkeit des Druckverlusts von der Porengröße Schema einer Messanordnung zur Bestimmung des Druckverlusts mittels Wassersäule.	107 109
5.16	Vergleich der gemessenen Massenströme zur Bestimmung der Permeabilität von Kollagenschwämmen (n=4, 3-fach Bestimmung)	110
6.1	Vergleich der gemessenen Sauerstoffpartialdrücke im BR und den statischen Kontrollgruppen über einen 14-tägigen Kultivierungszeitraum	
6.2	(n=3)	118
	raum (n=3)	119
6.3	Vergleich der gemessenen pH-Werte im BR und den statischen Kontrollgruppen über einen 14-tägigen Kultivierungszeitraum (n=3)	120
6.4	Vergleich der Oberflächenfärbungen nach 7-tägiger Kultivierung im BR und den statischen Kontrollgruppen im Brut- (BS-S) und Wärmeschrank (WS-S) (n=3, 4-fach Bestimmung)	121
6.5	Vergleich der Zellzahlen nach 7-tägiger Kultivierung im BR und den statischen Kontrollgruppen im Brut- (BS-S) und Wärmeschrank (WS-S).	
6.6	Vimentin- (links) und HE-Färbung (rechts) von Fibroblasten in Kollagenschwämmen nach 1 Tag statischer Kultur im Brutschrank	124
6.7	HE-Färbung von Fibroblasten in Kollagenschwämmen nach 7 Tagen statischer Kultur im Wärmeschrank (links) und dynamischer Kultivie-	124
6.8	rung im Bioreaktor (rechts)	124
	0,4mm Tiefe) nach 7 Tagen dynamischer Kultivierung im Bioreaktor.	124
В.1	Schematische Darstellung der Gas-Pyknometrie [Web01]	153
B.2	Schematische Darstellung der Quecksilberporosimetrie (nach [IBP01]).	154
B.3	Schematische Darstellung der Gasadsorption [Kel02].	156
D.1	Besiedlungskammer – Fixierungsring	163
D.2	Besiedlungskammer – Grundkörper und Deckel.	164
D.3	Bioreaktor – Grundkörper	165
D.4	Bioreaktor – Deckel.	166
D.5	Bioreaktor – Aufsatz	167
D.6	Bioreaktor – Standfuß.	167

Abbildungsverzeichnis

D.7	Blasenfalle – Grundkörper	168
D.8	Blasenfalle – Deckel	169
D.9	Blasenfalle – Standblech	170
F.1	Dimensions lose Konzentration $\xi_L=0-1$ als Funktion der dimensions-	
	losen Länge $L^*=0-10$ für verschiedene Widerstandsraten $\phi=0-20$	
	[Kje93]	175
F.2	Dimensions lose Konzentration $\xi_L=0-1$ als Funktion der dimensions-	
	losen Länge $L^* = 0 - 100$ für verschiedene Widerstandsraten $\phi = 0 - 200$	
	[Kje93]	176
F.3	Modellierte Abhängigkeit der Porosität von der Anzahl der Zellen im	
	Kollagenschwamm	179
F.4	Modellierte Abhängigkeit der Porengröße von der Anzahl der Zellen	
	im Kollagenschwamm.	179

Tabellenverzeichnis

3.1	Frierparameter Temperaturgradient G und Eisfrontgeschwindigkeit v .	28
3.2	Frierparameter Kühlrate B und Temperaturgradient G	31
3.3	Porengrößen, die in verschiedenen Frierversuchen erzielt wurden	34
3.4	Denaturierungstemperaturen gefriergetrockneter Kollagenmatrices	46
3.5	Untersuchung der Denaturierungstemperaturen von gerichtet erstarrt und gefriergetrockneten Kollagenschwämmen mit unterschiedlichen Porengrößen.	47
3.6	Abbauverhalten unvernetzter Kollagenproben mit bakterieller Kolla-	
	genase	49
3.7	Prozentual verbleibendes Gewicht von Kollagenproben nach der Degradation mit bakterieller Kollagenase gemessen am ursprünglichen Gewicht.	51
4.1	Methoden zur Besiedlung von Kollagenträgern mit Zellen.	65
4.2	Aus gemessenen Extinktionen errechnete Zellzahlen über einen Zeitraum von 21 Tagen.	70
5.1	Reynolds-Zahlen für Rohrteile im Bioreaktorsystem	82
5.2	Bestimmung der Schlauchlängen und O_2 -Sättigungen in Abhängigkeit	89
5.3	vom Volumenstrom	09
0.0	Abschatzung des Diuckveriusts über den Dit und Konagenschwamm mit der Porengröße $S=51\mu m.$	103
5.4	Gemessene Druckverluste in Abhängigkeit vom Volumenstrom und Vergleich mit den berechneten Daten (Kapillarrohrmodell (KRM) und	100
	Rechteckkapillarmodell (REKM))	109
6.1	Besiedelte Kollagenschwammproben für die dynamischen Kultivierungsversuche	114
E.1	Tabellarische Übersicht über verschiedene in der Literatur beschriebe-	
E 9	ne Bioreaktoren (I)	172
E.2	Tabellarische Übersicht über verschiedene in der Literatur beschriebene Bioreaktoren (II).	173
E.3	Tabellarische Übersicht über verschiedene in der Literatur beschriebe-	110
	ne Bioreaktoren (III)	174
F 1	Abmaße von Schwamm, Pore, Zelle, 6-, und 24-Wellplatte	177

Tabellenverzeichnis

F'.2	Berechnungen zur	Bestimmung des Reibungsverlusts in Abhängigkeit	
	von der Zellzahl.		178

Nomenklatur

Formelzeichen

Lateinische Variablen

A	- Fläche	$[m^2]$
A_0	- Anfangsquerschnitt	$[m^2]$
A_6	- Querschnittsfläche der 6-Wellplatte	$[m^2]$
A_{24}	- Querschnittsfläche der 24-Wellplatte	$[m^2]$
$A_{i,P}$	- innere Fläche einer Pore	$[m^2]$
$A_{i,S}$	- innere Schwammoberfläche	$[m^2]$
$A_{Quer,P}$	- Querschnittsfläche einer Pore	$[m^2]$
$A_{Quer,S}$	- Querschnittsfläche des besiedelbaren Schwammes	$[m^2]$
A_{Rohr}	- Rohrquerschnittsfläche	$[m^2]$
A_Z	- Fläche, mit der sich eine Zelle anlagert	$[m^2]$
B	- Kühlrate	[K/s]
B^*	- dimensionsbehaftete Kennzahl für die Kühlrate	[K/(m s)]
	(Parameter des Power-Down-Verfahrens)	
b	- Breite des Rechteckspaltes	[m]
c	- Konzentration eines gelösten Stoffes/Gases in der Lösung	[mol/l]
c_0	- Ausgangskonzentration eines gelösten Stoffes/Gases in der Lösung	[mol/l]
Cı	- Konzentration eines gelösten Stoffes in der Lösung	[mol/l]
c_l	- Lösungskonzentration an der planaren Eisfront bzw.	[mol/l]
c_l^*	an den Eiskristallspitzen	[moi/t]
c_L	- Konzentration eines gelösten Gases in der Flüssigphase	[mol/l]
	(bei der Schlauchlänge L)	
c_m	- Konzentration eines gelösten Gases im Gleichgewicht mit dem Gaspartialdruck	[mol/l]
d	- Probenschichtdicke/Rohrdurchmesser	[m]
D	- Zellgröße (Größe bzw. Durchmesser ausgebildeter, zellularer	[m]
	Eiskristalle parallel zur c-Achse)	. ,
d_6	- Durchmesser der 6-Wellplatte	[m]
d_{24}	- Durchmesser der 24-Wellplatte	[m]
d_i	- Innendurchmesser	[m]
d_S	- Schwammdurchmesser	[m]

D*	Dia to 1 and 1	r 2 / 1
D^*	- Diffusionskoeffizient	$[m^2/s]$
D_l^*	- Diffusionskoeffizient in Wasser	$[m^2/s]$
D_W^*	- Diffusionskoeffizient für das Wandmaterial	$[m^2/s]$
dc/dx	- Konzentrationsgradient	$[mol/m^4]$
d_W	- Wanddicke	[m]
d_Z F	- Durchmesser einer Zelle - Kraft	[m]
F_{max}	- Kraft - Höchstkraft	[N]
F_{max} F_{R}	- Kraft beim Reißen der Probe	[N] $[N]$
	- Erdbeschleunigung (9,81)	$[m/s^2]$
G	- Temperaturgradient	[K/m]
G^*	- dimensionsbehaftete Kennzahl für den Temperaturgradienten	[K]
d	(Parameter des Power-Down-Verfahrens)	[11]
G_L	- Gradient der Liquidustemperatur an der Eisfront	[K/m]
h	- Höhe des Rechteckspaltes	[m]
h_{aus}	- Reibungsverlusthöhe beim Ausströmen aus dem Kollagen-	[m]
ado	material	. ,
h_c	- Reibungsverlusthöhe in einer Düse	[m]
H_D	- Enthalpie	[J/g]
h_{ein}	 Reibungsverlusthöhe beim Einströmen in das Kollagen- material 	[m]
h_e	- Reibungsverlusthöhe im Diffusor	[m]
h_f	- Reibungsverlusthöhe in Rohrteilen und im porösen Material	[m]
J	- Gasmengenstrom durch das Material pro Flächeneinheit	$[mol/(m^2s)]$
	und Zeit	[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
k	- Verteilungskoeffizient	[-]
k_{KF}	- Konsistenzfaktor	[kg/(ms)]
K_c	- Kontraktionskoeffizient in einer Düse	[-]
k_{Darcy}	- Darcy Permeabilitätswert	$[m^2]$
K_e	- Erweiterungskoeffizient im Diffusor	[-]
K_H	- Henrykoeffizient	$[s^2/m^2]$
$k_{Perm.}$	- Fluidpermeabilität	$[1/m^2]$
L	- Länge	[m]
L_0	- Anfangslänge	[m]
L_e	- Kapillarrohrlänge	[m]
L_R	- Messlänge	[m]
L^*	- dimensionslose Länge	[-]
m_{tr}	- Trockenmasse eines Materials	[kg]
n	- Anzahl der Moleküle im idealen Gasgesetz	[mol]
$n_{6,max}$	- maximale Anzahl Zellen in der 6-Wellplatte	[-]
$n_{24,max}$	- maximale Anzahl Zellen in der 24-Wellplatte	[-]
n_F	- Fließindex	[-]
$n_{P/S}$	- Anzahl der Poren pro Schwamm	[-]

n_Z	- Anzahl der Zellen	[_]
$n_{Z/P}$	- maximale Anzahl der Zellen pro Pore	[_]
$n_{Z,max}$	- maximale Anzahl der Zellen im Schwamm	[_]
O_{2-Stq}	- O_2 -Sättigung	[%]
p		[Pa]
p_i	- Gaspartialdruck	[Pa]
R	- ideale Gaskonstante (8,3143)	$[Pa m^3/(mol K)]$
R_a		[m]
R_H	- hydraulischer Widerstand	$[kg/(m^4s)]$
R_i		[m]
r_{Pore}	- Porenradius	[m]
Re	- Reynoldszahl	[-]
s	- Länge der unterkühlten Zone/Stegdicke im Kollagenschwamm	[m]
S	- Porengröße	[m]
$S_{Abn.}$	- Abnahme des mittleren Porendurchmessers pro Zelle	[m]
S_{min}	- Porengröße bei maximaler Zellbesiedlung	[m]
T	- Temperatur	[K]
T_D	- Denaturierungstemperatur	$[^{\circ}C]$
T_l	- Liquidustemperatur	[K]
T_P	- Peaktemperatur bei DSC-Versuchen	$[^{\circ}C]$
u	- Strömungsgeschwindigkeit	[m/s]
u_0	- Leerrohrgeschwindigkeit	[m/s]
v	- Eisfront geschwindig keit	[m/s]
V		$[m^3]$
$V_{Feststoff}$	- Feststoffvolumen eines Materials	$[m^3]$
V_{ges}	- Gesamtvolumen eines Materials	$[m^3]$
	- Volumen des Kollagenmaterials im Schwamm	$[m^3]$
V_{K+Z}	- Volumen des Kollagenmaterials + Zellen	$[m^3]$
V_{Poren}	- Porenvolumen eines Materials	$[m^3]$
V_S	- Besiedelbares Rohvolumen des Schwammes	$[m^3]$
V_Z		$[m^3]$
\dot{v}		$[m^3/(m^2s)]$
\dot{V}	- Volumenstrom	$[m^3/s]$
x	- Ortskoordinate	[-]
z	- Höhenverlust	[m]

Griechische Variablen

,		
eta'	- Verhältnis zwischen Eingangs- und Ausgangsfläche	[-]
$\dot{\gamma}$	- Schergefälle	[1/s]
Γ	- Gibbs-Thomson-Koeffizient	[K m]
δ	- Kapillarrohrdurchmesser	[m]
Δp	- Druckverlust über das poröse Material	[Pa]
ϵ	- Dehnung	[%]
ϵ_R	- Reißdehnung	[%]
ε	- Porosität	[%]
ε_{Abn} .	- Abnahme der Porosität pro Zelle	[%]
ε_{n_Z}	- Porosität in Abhängigkeit von der Zellzahl	[%]
ζ	- Verlustbeiwert	[-]
η	- dynamische Viskosität	$[Pa\ s]$
ϑ_c	- Verengungswinkel	[°]
ϑ_D	- Diffusorwinkel	[°]
ϑ_D^*	- kritischer Diffusorwinkel	[°]
λ_1	- primärer Dendriten- bzw. Zellabstand	[m]
μ	- Tort uosität	[-]
ν	- kinematische Viskosität	$[m^2/s]$
ξ_L	- dimensionslose Konzentration	[-]
ρ	- Dichte	$[kg/m^3]$
ρ_R	- Rohdichte	$[kg/m^3]$
σ	- Spannung	$[N/m^2]$
σ_{max}	- Zugfestigkeit	$[N/m^2]$
σ_R	- Reißfestigkeit	$[N/m^2]$
τ	- Schubspannung	$[N/m^2]$
τ_o	- Fließgrenze	$[N/m^2]$
ϕ	- Widerstandsrate ("resistance ratio")	[-]
	· · · · · · · · · · · · · · · · · · ·	

Abkürzungen für Stoffe & Chemische Strukturformeln

Abkürzungen für Stoffe

APAAP	- Komplex aus alkalischer Phosphatase und
	Anti-Alkalischer Phosphatase
DMEM	- Dulbecco's Modified Eagle Medium (Zellkulturmedium)
EDC	- 1-Ethyl-3-(3-Dimethylaminopropyl)-Carbodiimid-Hydro-
	chlorid (Vernetzungsreagenz für Kollagenschwämme)
EDTA	- Ethylen-Dinitrilo-Tetra-Acetat
EPPS	- 4-(2-Hydroxyethyl)-Piperazin-1-Propan-Sulfonsäure (Puffer)

EtO - Ethylenoxid

FCS - Fötales Kälberserum

GA - Glutaraldehyd (Vernetzungsreagenz)

Gly - Aminosäure Glycin

HE - Hämalaun-Eosin (histologische Farbstoffe)

HEPES - 2-[4-(2-Hydroxyethyl)-1-piperazinyl]-Ethan-Sulfonsäure

(Puffer)

HMDIC - Hexamethylendiisocyanat (Vernetzungsreagenz)
MOPS - 3-(N-Morpholino)-propansulfonsäure (Puffer)

MTT - 3-[4,5-Dimethylthiazol-2-yl]-2,5-Diphenyl-Tetrazolium-Bromid

NHS - N-Hydroxysuccinimid (Vernetzungsreagenz)

PBS - Phosphat puffer-Lösung (Phosphate Buffer System)

Pen. - Penicillin (Antibiotikum)

PGA - Polyglykolid (Poly(glycolic acid))
PLLA - Polylactid (Poly(L-lactic acid))
PMMA - Polymethylmetacrylat (Plexiglas®)

PP - Polypropylen Pro - Aminosäure Prolin

PS - Polystyrol

PTFE - Polytetrafluorethylen (Teflon®) Strep. - Streptomycin (Antibiotikum)

TBS - Trispuffer-Lösung (Tris-Buffer System)

Chemische Strukturformeln

CaCl₂ - Calciumchlorid

 $C_{10}H_{16}N_2O_8$ - EDTA (Titriplex III), Ethylen-Dinitrilo-Tetraessigsäure-

Dinatriumsalz-Dihydrat

 $\begin{array}{lll} CO_2 & - & \text{Kohlendioxid} \\ HCL & - & \text{Salzs\"{a}ure} \\ HCO_3^- & - & \text{Carbonation} \\ H_2CO_3 & - & \text{Kohlens\"{a}ure} \\ H_2O & - & \text{Wasser} \\ H_3O^+ & - & \text{Hydroniumion} \\ \end{array}$

 H_3O^{+} - Hydroniumion H_2O_2 - Wasserst off peroxid

K - Kalium Na - Natrium

 $NaHCO_3$ - Natrium-Bicarbonat (CO_2 -abhängiger Puffer)

NaOH - Natronlauge

 $NH_2C(CH_2-OH)_3$ - Tris-HCl (Tizma-HCl), Tris(hydroxymethyl)aminomethan-

hydrochlorid

 O_2 - Sauerstoff

Abkürzungen für Begriffe

3D - dreidimensional Abk. - Abkürzung Abn. - Abnahme BR - Bioreaktor

BS - Besiedlungsmethode, Pipettieren der Zellsuspension auf unbehandelte

Schwämme

BS- - Brutschrank

BSBK - Besiedlungsmethode mit Hilfe einer Besiedlungskammer

BSC - Besiedlungsmethode, Pipettieren der Zellsuspension auf gecoatete

Schwämme

BSS - Besiedlungsmethode mit Hilfe einer Spritze

d - Tag (day)

HIA - Helmholtz-Institut AachenK - Kontrollgruppe ohne Schwamm

Konz. - Konzentration
KRM - Kapillarrohrmodell
Lit. - Literaturstelle
max - maximal
min - minimal

REKM - Rechteckkapillarmodell

REM - Rasterelektronenmikroskop/Rasterelektronenmikroskopie

RZ - Restzellen, Zellen am Gefäßboden unterhalb der Kollagenschwämme

S - Kontrollgruppe mit Schwamm

Sätt. - Sättigung
Steri. - Sterilisation
Sus. - Suspension
TE - Tissue Engineering

UKA - Universitätsklinikum Aachen

Verd. - Verdünnung WS- - Wärmeschrank