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Summary

The aim of this work is the design, implementation and evaluation of an approach that
integrates economic and environmental criteria for the assessment and optimisation of
processes. Even it is clear that the paradigm of sustainable development is the guiding
principle to evaluate processes and any human activity, the approach designed covers only
two of the columns of the concept of sustainability: economy and environment. The inclusion 
of social or socio-economic criteria is beyond the scope of this investigation. Among the
criteria considered, the focus of this work is set on the environmental aspect. 

An environmental assessment approach following the notion of sustainability must attempt to 
evaluate all potential impacts that a process can cause on the different environmental
compartments, not only on a site-specific scale but along the complete network of supply
chains to run the process, i.e. life-cycle. An approach based on the principles of life-cycle
thinking is a necessary step in this direction.

Much efforts have been carried out in the last 15 years to develop life-cycle thinking approa-
ches, e.g. the environmental life-cycle assessment (LCA), which have led to the
standardisation of the LCA methodology and its positioning and acceptance as a tool that
aims towards a holistic process assessment from a systemwide perspective. However, it has to 
be acknowledged that no single assessment tool can cover all relevant aspects related to
environmental assessment making it necessary to apply a combination of methods.

In order to illustrate the need of combining several assessment tools and the limitations of
part of current methods available in LCA, e.g. impact assessment methods for toxic
emissions, two end-of-pipe processes dealing with the elimination of toxic compounds from
waste waters and sediments have been studied. The elements composing the integrated
approach for assessing and optimising treatment processes are:

a) Economic analysis to determine treatment costs 

b) Environmental assessment based on a combination of a LCA-based approach comple-
mented with eco-toxicological investigations to assess the quality of the treated materials
and potential toxic impacts when they are discharged in the aquatic environment

Although it is clear that on the first instance end-of-pipe technologies do not represent an
option that fully fits into the concept of sustainability, they are considered as a last resource to 
prevent pollution or higher risks to the environment. Two end-of-pipe processes are studied
in this investigation for the following reasons:

a) Treatment and remediation processes illustrate best the methodological challenges of
attempting an approach based on life-cycle thinking for processes traditionally assessed
from a site-specific perspective. 

b) The analysis of treatment processes evidences the need to combine existing tools for
process assessment of technologies dealing with toxic emissions and to identify their
synergies, e.g. the combination of an effect-oriented approach (based on bioassays) with
an inventory-oriented approach such as life-cycle assessment.
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The first process studied was a laboratory scale process to treat dockyard waters
contaminated with copper, zinc and tributyltin (TBT). The elimination of the heavy metals
was done by means of flocculation with ferric salts, while TBT was decomposed by means of 
electrolysis.

The main task consisted in developing the electrochemical treatment process to eliminate
TBT because conventional water treatment processes are not suitable to reach a final TBT
concentration of 100 ng/L Sn. Two anode materials for the electrolysis were tested: boron-
doped diamond anodes (the support material was niobium and the doping level of boron was
2000 ppm) and titanium coated with iridium dioxide (Ti/IrO2). The former is a novel material 
with exceptional properties for hydroxyl radical generation, whilst the latter is a
commercially available material.

The results of the assessment showed that it was possible to destroy organotins down to the
target concentration with both anode materials exhibiting similar degradation rates.
Nevertheless it was necessary to add a granular activated carbon (GAC) adsorption unit to
eliminate AOX formed during the electrolysis and residual oxidants and reduce the high
toxicity levels indicated by the bioassays. The life-cycle assessment of this process revealed
that the most environmentally “costly” operation unit was electrochemical treatment
(compared to flocculation and GAC) and therefore was subjected to optimisation. 

A multiobjective optimisation (MO) approach was needed to optimise the operation of the
electrochemical reactor in terms of treatment costs and life-cycle impacts (depletion of abiotic 
resources, global warming and acidification effects). The MO problem was solved using the
ε-constraint method to obtain the non-inferior solutions for the criteria considered. Operating
with Ti/IrO2 resulted advantageous mostly due to the lower anode material costs. To select
the “best” operation conditions out of the non-inferior curve, the point closer to a reference
point representing the best theoretical performance that the electrolysis could achieve was
selected (the best operating conditions obtained were: employing Ti/IrO2 anodes at a current
density of 9.5 mA/cm2, which resulted in treatment costs of 1.18 €/m3, required 72.8 MJ of
fossil energy per m3 and emission of 6.0 kg CO2 equivalents and 0.034 kg SO2 equivalents
per m3).

The second process was a pilot scaled process to remediate TBT contaminated sediments by
means of electrolysis. The sediment throughput of the plant was 0.2 t/h. The process was able 
to decrease TBT down to the target 100 μg/kg in the range of 4.4 to 6.6 mA/cm2 with
treatment costs between 20 to 23 €/t. Similarly to the waste water treatment process, the LCA 
methodology applied resulted unsuitable to assess the behaviour of toxicity of the sediment
during treatment. TBT and PAH decreased but heavy metals and PCB were not affected by
treatment. Although the concentrations of these pollutants of concern decreased or remained
constant, the effect-oriented approach (ecotoxicological test investigation) indicated high
toxicity of the sediment. By-products (e.g. AOX) and residual oxidants were the cause of
these effects. 

These examples showed the synergies between inventory- and effect-oriented approaches for
assessment of processes dealing with toxic emissions. In addition, the compatibility of LCA
with site-specific assessment tools to improve the quality of environmental assessments was
demonstrated, as well as its compatibility with multi-criteria tools for optimisation and
integration of environmental and economic criteria in a sustainability-oriented approach. 


