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Abstract

Analyzing the performance of applications is an important step in the development process
of scientific software for high-performance computing systems. Programmers need to
ensure that their code performs well and does make good use of the available resources
on such systems.

Unfortunately, the task of finding inefficiencies and identifying their reasons can be a time-
consuming and difficult challenge — even for sequential programs. For large-scale parallel
systems and programs the situation is complicated by several factors. Firstly, parallel
programming is inherently more complicated than sequential programming and additional
middleware layers may be present that affect the achieved performance. Secondly, the
constantly increasing size and complexity of parallel systems and the problems solved on
them leads to challenges concerning the scalable collection, visualization, and analysis of
performance data.

This work presents an approach to performance analysis and a software tool called
Periscope that tries to avoid some of the problems outlined above in order to effec-
tively detect inefficiencies on large-scale parallel computing systems. The approach is
based on the notion of performance properties that formally capture situations of in-
efficient execution. By formalizing what constitutes inefficient behavior, the detection
process can be automated. The component which performs the automated performance
analysis in Periscope is called an agent and several agents distributed over the parallel
machine cooperate in the overall analysis process for an application.

The decomposition of the tool into a number of agents keeps the analysis process scalable.
As an application’s size increases in number of processors or SMP nodes used, the tool’s
size can also increase in number of analysis agents employed. The distribution also solves
problems related to the management of large amounts of performance data. The agents
analyze data close to the origin in the application and thus problems with a centralized
collection, storage, and processing are avoided. Finally, the Periscope approach allows
for online analysis. That is, the performance analysis process can be initiated at any
time while the program is still running, as opposed to a post-mortem approach where
performance data is analyzed after program termination.
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