Lehrstuhl fiir Rechnertechnik und Rechnerorganisation
der Technischen Universitat Miinchen

Scalable Automated Online Performance
Analysis of Applications using
Performance Properties

Karl Fiurlinger

Vollstédndiger Abdruck der von der Fakultdt fiir Informatik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. A. Bode

Priifer der Dissertation:
1. Univ.-Prof. Dr. H. M. Gerndt

2. Univ.-Prof. Dr. H.-J. Bungartz

Die Dissertation wurde am 11. Mai 2006 bei der Technischen Universitat Miinchen ein-
gereicht und durch die Fakultit fiir Informatik am 3. Juli 2006 angenommen.

Research Report Series
Lehrstuhl fir Rechnertechnik und
Rechnerorganisation (LRR-TUM)
Technische Universitat Miinchen

http://wwwbode.in.tum.de/

Editor: Prof. Dr. A. Bode

Vol. 33

Scalable Automated Online
Performance Analysis of Applications
using Perfc Properties

LMWFUrIinger

SHAKER

IVERL A G
Aachen 2006

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: Minchen, Techn. Univ., Diss., 2006

Copyright Shaker Verlag 2006

Allrights reserved. No part of this publication may be reproduced, storedina
retrieval system, ortransmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
ofthe publishers.

Printedin Germany.

ISBN-10: 3-8322-5459-5
ISBN-13: 978-3-8322-5459-9
ISSN 1432-0169

Shaker Verlag GmbH « P.O.BOX 101818 « D-52018 Aachen
Phone: 0049/2407/9596-0 « Telefax: 0049/2407/9596-9
Internet: www.shaker.de * e-mail:info@shaker.de

Abstract

Analyzing the performance of applications is an important step in the development process
of scientific software for high-performance computing systems. Programmers need to
ensure that their code performs well and does make good use of the available resources
on such systems.

Unfortunately, the task of finding inefficiencies and identifying their reasons can be a time-
consuming and difficult challenge — even for sequential programs. For large-scale parallel
systems and programs the situation is complicated by several factors. Firstly, parallel
programming is inherently more complicated than sequential programming and additional
middleware layers may be present that affect the achieved performance. Secondly, the
constantly increasing size and complexity of parallel systems and the problems solved on
them leads to challenges concerning the scalable collection, visualization, and analysis of
performance data.

This work presents an approach to performance analysis and a software tool called
Periscope that tries to avoid some of the problems outlined above in order to effec-
tively detect inefficiencies on large-scale parallel computing systems. The approach is
based on the notion of performance properties that formally capture situations of in-
efficient execution. By formalizing what constitutes inefficient behavior, the detection
process can be automated. The component which performs the automated performance
analysis in Periscope is called an agent and several agents distributed over the parallel
machine cooperate in the overall analysis process for an application.

The decomposition of the tool into a number of agents keeps the analysis process scalable.
As an application’s size increases in number of processors or SMP nodes used, the tool’s
size can also increase in number of analysis agents employed. The distribution also solves
problems related to the management of large amounts of performance data. The agents
analyze data close to the origin in the application and thus problems with a centralized
collection, storage, and processing are avoided. Finally, the Periscope approach allows
for online analysis. That is, the performance analysis process can be initiated at any
time while the program is still running, as opposed to a post-mortem approach where
performance data is analyzed after program termination.

ii

Acknowledgments

Many people have contributed to the success of this work. First and foremost, many
thanks are directed to Prof. Michael Gerndt and Prof. Arndt Bode for providing such a
supportive environment for conducting research. It is my belief that there are few places
that can match the freedom and support for research that I had the opportunity to receive.

As any research, this work builds on the previous ideas of many people and I would like
express my gratitude for their excellent work. Most notably, the work of Bernd Mohr and
Felix Wolf was very helpful and enlightening in many situations. Additionally, numerous
helpful people — too many to be named individually — have offered their advice when it
was needed and supported me in many different ways.

Lastly, I owe the deepest gratitude to my parents for their continuous, unwavering support
OVer SO many years.

Karl Firlinger
Munich, Germany
May 2006

iii

iv

Contents

1 Introduction

1.1 Performance Analysis
1.2 The Benefit of Automation
1.3 Contribution of This Work

2 Existing Approaches for Automated Performance Analysis

2.1 Paradyn
2.2 Expert
23 Aksum ...
24 MATE
2.5 Poirot
2.6 Projections:Expert
2.7 Statistical Performance Data Analysis

2.7.1 Index of Dispersion Analysis

2.7.2 Statistical Scalability Analysis o000

3 Performance Properties

3.1 The APART Specification Language (ASL)
3.2 OpenMP Properties.
3.2.1 DataModel oo
3.2.2 Property Specification oo
3.3 Properties of MPI Applications
3.3.1 DataModel
3.3.2 Property Specification oo

11
13
13
14
15

16
16

19
19
22
22
25
32
32
32

CONTENTS

4 The Periscope Monitoring Approach

vi

4.1

4.2

4.3
4.4

The

ot
—

5.2

Instrumentation o000
4.1.1 OpenMP Instrumentation
4.1.2 MPI Instrumentation 00000
The PSC Monitoring Library
4.2.1 Data Structures Allocated by the Monitoring Library
The Periscope Common Memory Access Abstraction

Runtime Information Producer

Periscope Performance Analysis Tool

The Periscope Registry Service L.
5.1.1 Registry Data oo
5.1.2 Registry Service Protocol oL
The Periscope Node-Level Agents
5.2.1 The Design and Implementation of the Node-level agents

5.2.2 Search for Performance Properties

5.3 The Periscope High-Level Agents
5.3.1 Agent Communication Infrastructure

5.4 The Periscope Frontend oo
5.4.1 Instantiation of the Agent Hierarchy — Periscope Startup
5.4.2 Usage Example oo

Evaluation

6.1 A RIP-based Profiler for OpenMP Applications

6.2
6.3

6.4

6.1.1 Overhead Analysis based on the ASL Data Model
6.1.2 Scalability Analysis
6.1.3 Experiments
Monitoring Overhead of Periscope
The APART Test Suite (ATS) o i
6.3.1 OpenMP Inefficiency Patterns
6.3.2 MPI Inefficiency Patterns

A Parallel Quicksort Implementation,

37
37
38
38
40
41
44
47

49
49
50
52
54
54
57
57
58
60
61
67

5

CONTENTS

6.5 A Mixed-Parallel Jacobi Solver 93
6.6 The NAS Parallel Benchmark Suite 94
6.6.1 MPI 94

6.6.2 OpenMP 96

7 Summary and Outlook 99

vii

CONTENTS

viil

List of Figures

1.1

2.1

2.2

3.1

3.2

3.3

3.4

3.6

4.1

4.2
4.3

4.4

A schematic illustration of the measure-analyze-modify cycle. 3

Paradyn’s search history graph uses color-coding to indicate the status of
tested hypotheses (reproduced after [64]). 10

Expert’s result viewer with three hierarchical displays (reproduced after [82]). 12

An ASL property specification for the WaitAtBarrier property. 20

The basic ASL data model used by Periscope, represented as an UML-like
class diagram. Both static (e.g., the region nesting) as well as dynamic
performance data (e.g., region summaries) are supported by the ASL model. 21

The OmpPerf structure contains summary (profiling) data for OpenMP
constructs. 23

The times and counts defined for the various OpenMP region types in the
ASL OmpPerf data model for OpenMP applications. 24

An example for the OmpPerf data structure for an OpenMP code fragment
consisting of a parallel region that contains a critical section, executed by
four threads. 26

The MpiPerf structure holds summary data for MPI calls. 33

Instrumentation added to an OpenMP parallel region by Opari. The origi-
nal source code is shown in boldface and the indentation has been optimized. 39

MPTI instrumentation using the library interposition technique. 39

Schematic illustration of the Periscope monitoring approach. The monitor
is separated into two components (PSC library and Runtime Information
Producer). 40

Data structures maintained by the PSC library in a common memory region. 41

ix

LisT OF FIGURES

4.5

4.6

4.7

5.1

5.2

5.8

6.1

6.2

Structure of the event records used by Periscope. For each program execu-
tion event (e.g., entering or exiting a region, sending a message) an event
record is assembled and stored in a ring-buffer.00

The buffers and tables holding performance data are either allocated in
physically shared memory (a) or an RDMA facility is used to create a
shadow copy (b).

The RIP transforms the event records and data from the context table
delivered by the PSC library into C++ objects corresponding to this class

Schematic illustration of the components of the Periscope performance
analysis system.o

Example entries created in the Periscope registry service for the perfor-
mance analysis of the OpenMP application “310.wupwise.psc” running on
node “opt33”. The hierarchy of agents encoded via the tag key is shown
inFig. 5.3.o

Periscope agent hierarchy corresponding to the registry entries shown in
Fig. 5.2 (some keys omitted for brevity).

The set of keys supported by the Periscope registry service.
Schematic illustration of the structure of the Periscope node-level agents. .
The layered design of the Periscope node-level agents.

Example agent hierarchy graph for 16 MPI processes that are executed on
8 nodes (opt01,...,0pt08). The maximum number of child agents (the
maxfan parameter) was set to four. Lo L

The startup process of the Periscope tool.

Example ompP output for an OpenMP CRITICAL region. R00002 is the
region identifier, cpp_gsompl.cpp is the source code file and 156-177 de-
notes the extent of the construct in the file. Execution times and counts
are reported for each thread individually, and summed over all threads in
the last line.

The timing categories reported by ompP for the different OpenMP con-
structs and their categorization as overheads by ompP’s overhead analysis.
(S) corresponds to synchronization overhead, (I) represents overhead due
to imbalance, (L) denotes limited parallelism overhead, and (M) signals
thread management overhead. L.

50

6.3

6.4
6.5

6.6

6.6

6.7

6.8

6.9

6.10

6.11

LisT OF FIGURES

Example overhead analysis report generated by ompP, the columns related
to the thread management category (Mgmt) are omitted due to space limi-
tations. 76

The OpenMP constructs found in the NAS parallel benchmarks version 3.2. 77

Speedup achieved by the NAS benchmark programs relative to the 2-
Processor execution. 78

Scaling of the total runtime and the division into work and overhead cat-
egories for the NAS OpenMP parallel benchmarks (BT, CG, EP, FT, IS,

and LU). . ..o 79
Scaling of the total runtime and the division into work and overhead cate-
gories for the NAS OpenMP parallel benchmarks (MG and SP). 80

A detailed scalability analysis at the level of individual parallel regions of
the BT application. The four most important parallel regions are analyzed
with respect to the work performed and the overheads incurred for an
increasing number of threads. o000 81

Monitoring overhead of the Periscope monitoring infrastructure for various
event rates. 82

Monitoring overhead incurred for several applications from the NAS bench-
mark suite. The occasional decrease reflects the natural runtime variation
for multiple program runs. 83

Performance properties identified by Periscope. This table lists all discov-
ered performance properties, even such with very low severity values. . . . 97

The three most severe performance properties with source-code location
and severity value, identified by Periscope (only two properties were found
for EP). 97

xi

