Heterogenkatalysierte Verfahren zur Acylierung von aromatischen und olefinischen Doppelbindungen

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Chemiker Hans Schuster aus Mediasch, Rumänien

Berichter: Universitätsprofessor Dr. Wolfgang F. Hölderich Universitätsprofessor Dr. Carsten Bolm

Tag der mündlichen Prüfung: 04.04.2005

Berichte aus der Chemie

Hans Schuster

Heterogenkatalysierte Verfahren zur Acylierung von aromatischen und olefinischen Doppelbindungen

D 82 (Diss. RWTH Aachen)

Shaker Verlag Aachen 2006

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Aachen, Techn. Hochsch., Diss., 2005

Copyright Shaker Verlag 2006 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN-10: 3-8322-5215-0 ISBN-13: 978-3-8322-5215-1 ISSN 0945-070X

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • E-Mail: info@shaker.de

Die vorliegende Arbeit wurde zwischen Oktober 2000 und Mai 2004 am Lehrstuhl für Technische Chemie und Heterogene Katalyse im Institut für Brennstoffchemie und physikalisch-chemische Verfahrenstechnik der RWTH-Aachen angefertigt.

Mein besonderer Dank gilt Herrn Universitätsprofessor Dr. rer. nat. Wolfgang F. Hölderich für die interessante Themenstellung, für seine stete Diskussionsbereitschaft und freundliche Hilfe sowie für die Bereitstellung ausgezeichneter Arbeitsbedingungen.

Herrn Universitätsprofessor Dr. rer. nat. Carsten Bolm danke ich für die Übernahme des Korreferates

Der DFG danke ich für die Finanzierung von Teilen dieser Arbeit im Rahem des SFB 442 "Umweltverträgliche Tribosystheme". In diesem Zusammenhang möchte ich mich bei meinen Projektpartnern Dr. L. A. Rios und Dr. P. P. Weckes für die angenehme und äußerst erfolgreiche Zusammenarbeit bedanken; danke Paddy, gracias Luis.

Der Firma Fuchs danke ich für die anregenden fachlichen Diskussionen.

Für die Durchführung zahlreicher analytischen Messungen gilt mein besonderer Dank Fr. Dr. Hausmann, Hr. M. Gilliam, Fr. J. Queck, Fr. E. Biener und Hr. K. Vaeßen.

Für das stressfreie Arbeitsklima im Labor danke ich meinen Laborkollegen Dr. E. Fromentin, Dr. M. H. Valkenberg, Dr. A. Miranda, Dipl. Ing. E. Bartel, Dipl. Ing. B. Cook und Dipl. Ing. D. Mousko.

Den Herrn Dipl. Ing. A. Sbresny und Dipl. Ing. G. Wirtz danke ich für Ihre Hilfe bei der Lösung von meist "nicht trivialen" Computerproblemen.

Zum Dank verpflichtet bin ich weiterhin allen Institutsangehörigen, die durch ihre engagierte Mitarbeit zum Gelingen dieser Arbeit beigetragen haben, insbesondere meinen Freunden und Kollegen Monika Wissler, Isabell Russo, Wilm Eikelberg, M. Drope, A. Crosman, F. Kollmer und J. Niederer.

Fr. Cand. Chem. I. Walzel, Hr. Cand. Chem. B. Rußbüldt und Hr. Cand. Ing. D. Egbuniwe danke ich für ihre tatkräftige und interessierte Mitarbeit im Rahmen ihrer Ausbildung.

<u>1</u> <u>Einleitung und Aufgabenstellung</u>	1
2 Allgemeiner Teil	3
2.1 Heterogene Katalysatoren	3
2.1.1 Zeolithe	3
2.1.1.1 Synthese und postsynthetische Modifikation von Zeolithen	4
2.1.1.2 Industrielle Anwendung von Zeolithen	6
2.1.2 Saure Ionenaustauscherharze	7
2.1.2.1 Amberlyst	7
2.1.2.2 Nafion	8
2.1.2.3 Nafion Silica Nanocomposite	9
2.1.3 Tonerden	10
2.2 Acylierung von Methoxynaphthalin	12
2.2.1 Friedel – Crafts Acylierung	12
2.2.2 (S) - Naproxen	12
2.2.3 Heterogene Acylierung von 2-Methoxynaphthalin	14
2.3 Native Öle	16
2.3.1 Pflanzenöle in der organischen Synthese	18
2.3.1.1 Reaktionen an der gesättigten Kohlenwasserstoffkette	18
2.3.1.2 Reaktionen an der Doppelbindung	19
2.3.1.3 Oxidative Spaltung	19
2.3.1.4 Isomerisierung	20
2.3.1.5 Metathese	21
2.3.1.6 Diels-Alder und en-Reaktionen	21
2.3.1.7 Carboxylierung und Radikaladditionen	22
2.3.1.8 Addition von Carbonsäuren	22
2.3.2 Oxidation von Pflanzenölen	23
2.3.2.1 Natürliche Oxidation	23
2.3.3 Epoxidierung von Pflanzenölen	23
2.3.3.1 Epoxidierungsmethoden	23
2.3.4 Folgereaktionen von epoxidierten Pflanzenölen	25
2.3.4.1 Additionen an epoxidierten Pflanzenölen	26
2.4 Einsatz von nachwachsenden Ölen als Schmierstoffe	26
2.4.1 Evaluierung von biologisch schnell abbaubaren Schmierstoffen	28
2.4.1.1 Beurteilung der Umweltverträglichkeit	28

Inhaltsverzeichnis

2.4.1.2 Biologische Abbaubarkeit und Ökotoxizität	29
2.4.1.3 Alterungsstabilität von Schmierfluiden	29
2.4.2 Physikalische Eigenschaften und chemische Kennzahlen nativer Ö)le 30
2.4.3 Tribometer	32
3 Ergebnisse und Diskussion	34
3.1 Heterogen katalysierte Acylierung von Methoxynaphthalin	34
3.1.1 Reaktionsverlauf	34
3.1.2 Nafion Silica Composite in der H-Form	36
3.1.2.1 Einfluss von Oberfläche und Struktur der Nafion Silica Composite	;
auf die Acylierung von 2 - Methoxynaphthalin	36
3.1.2.2 Einfluss von Nafiongehalt und Azidität der Composite – Materialie	n
auf ihre katalytische Aktivität	40
3.1.3 Acylierung von 2-Methoxynaphthalin mit Acetylchlorid in Gegenwar	rt von
Nafion Silica Composites	46
3.1.4 Rezyclisierung des Katalysators	48
3.1.5 Metallionen getauschte Nafion / Silica Composite Katalysatoren in	der
Acylierung von 2-Methoxynaphthalin mit Essigsäureanhydrid	49
3.1.5.1 Herstellung und Charakterisierung der ionengetauschten	
Composite - Materialien	49
3.1.5.2 Katalytische Ergebnisse der ionengetauschte Nafion / Silica Com	posite 51
3.1.6 Leaching und Deaktivierung der Composite - Materialien	53
3.1.7 Schlussfolgerungen zum Einsatz von Nafion / Silica Composites in	der
Acylierung von 2-Methoxynaphthalin	55
3.2 Zeolithe in der Acylierung von 2-Methoxynaphthalin	56
3.2.1 Der Zeolith H-BEA in der Acylierung von 2 - Methoxynaphthalin	57
3.2.1.1 Physikalische Eigenschaften des Zeolithen H-BEA	57
3.2.1.2 Azide Eigenschaften	58
3.2.1.3 Katalytische Aktivität des Zeolithen HBEA	60
3.2.2 Ionengetauschte Zeolithe in der Acylierung von Methoxynaphthalin	61
3.2.2.1 Physikalische Eigenschaften	61
3.2.2.2 Azide Zentren	63
3.2.2.3 Katalytische Ergebnisse	68
3.2.2.4 Langzeitverhalten und Deaktivierung der zeolithischen Katalysato	oren 70
3.2.2.5 Rezyklisierung der Katalysatoren	73

Inhaltsverzeichnis

3.2.2.6 Schlussfolgerungen zum Einsatz von ionengetauschten Zeolithen in der	
Acylierung von 2 – Methoxynaphthalin	75
3.3 Herstellung von Hydroxyestern auf Basis von epoxidiertem	
Ölsäuremethylester	76
3.3.1 Reaktionsverlauf	77
3.3.2 Vorversuche zur Oxiranringöffnung mit Säuren	78
3.3.2.1 Umsetzung von epoxidiertem Ölsäuremethylester mit Ameisensäure	78
3.3.2.2 Umsatz von epoxidiertem Ölsäuremethylester mit Essigsäure	79
3.3.2.3 Umsatz von epoxidiertem Ölsäuremethylester mit Pivalinsäure	79
3.3.2.4 Umsatz von epoxidiertem Ölsäuremethylester mit Isobuttersäure	80
3.3.2.5 Umsatz von epoxidiertem Ölsäuremethylester mit Benzoesäure	81
3.3.3 Schlussfolgerungen der Vorversuche zur Herstellung von Hydroxyestern	82
3.3.4 Einsatz von heterogenen Katalysatoren in der Herstellung	
von Hydroxyestern	83
3.3.4.1 Einsatz von Nafion Silica Composite Katalysatoren in der Herstellung vo	n
Hydroxyestern	83
3.3.4.2 Einsatz von Amberlite- und Amberlyst15- Katalysatoren in der Hestellung	g von
Hydroxyestern	85
3.3.4.3 Einsatz von Y-Zeolithen als Katalysatoren in der Herstellung	
von Hydroxyestern	86
3.3.4.4 Einsatz der Tonerden K10 und KSF0 als Katalysatoren	
in der Hestellung von Hydroxyestern	88
3.3.5 Einfluss der Struktur der eingesetzten Säuren auf die	
Herstellung der Hydroxyester	90
3.3.6 Schlussfolgerungen zur heterogen katalysierten	
Oxiranringöffnung von eOME mit Säuren	91
3.3.7 Eigenschaften der Hydroxyester als Schmierfluide	93
3.3.7.1 Oxidationsstabilität der synthetisierten Hydroxyester	94
3.3.7.2 Viskosität und Viskositätsindices der Hydroxyester	95
3.3.8 Schlussfolgerungen	97
3.3.9 Scale up und Produktion von Schmierfluiden in einer Techikumsanlage	98
4 Zusammenfassung und Ausblick	<u>101</u>
5 Experimenteller Teil	105
5.1 Chemikalien und Gase	105

Inhaltsverzeichnis

5.2	Analytik	106
5.2.	1 Gaschromatographie	106
5.2.	2 Massenspektrometrie (GC-MS)	109
5.2.	3 ICP – AES Elementaranalyse	109
5.2.	4 Thermogravimetrie	109
5.2.	5 MAS Spektroskopie	110
5.2.	6 Untersuchung der sauren Zentren mittels Pyridin-Adsorption und FT-IR	111
5.3	Eingesetzte Katalysatoren	111
5.3.	1 lonentauscher	111
5.3.	2 Ionengetauschte Nafion Silica Composites	112
5.3.	3 Ionengetauschte Zeolithe	112
5.3.	3.1 Austausch mit CuCl ₂ ·2H ₂ O	112
5.3.	3.2 Austausch mit FeCl ₃	112
5.3.	3.3 Austausch mit AgNO ₃	113
5.3.	4 Reaktionen in der diskontinuierlichen Flüssigphase (Batch), zur Acylierur	ng von
	2 - Methoxynaphthalin	114
5.3.	5 AVV: 1-Acetyl-2-Methoxynaphthalin	114
5.3.	6 Reaktionen in der diskontinuierlichen Flüssigphase (Batch), zur Herstellu	ıng
	von Hydroxyestern auf Basis von epoxidiertem Ölsäuremethylester	115
5.3.	6.1 Reaktionen im Paralellsynthesemaßstab	115
5.3.	6.2 Reaktionen im Labormaßstab	115
5.3.	6.3 Reaktionen im bench-scale Maßstab	115
5.3.	7 AVV: 9(10)-Hydroxy-10(9)-Formyloxystearinsäuremethylester	116
5.3.	8 AVV: 9(10)-Hydroxy-10(9)-Acetoxystearinsäuremethylester	117
5.3.	9 AVV: 9(10)-Hydroxy-10(9)-Isobutyroxystearinsäuremethylester	118
5.3.	10 AVV: 9(10)-Hydroxy-10(9)-Pivaloxystearinsäuremethylester	119
5.3.	11 AVV 9(10)-Hydroxy-10(9)-Benzoxystearinsäuremethylester	120
<u>6 L</u>	Literatur	121

Abkürzungsverzeichnis

AA Essigsäureanhydrid

1,2ACMN 1-Acyl-2-Methoxynaphthalin

1,7ACMN 1-Acyl-7-Methoxynaphthalin

2,6ACMN 2-Acyl-7-Methoxynaphthalin

A Ausbeute
Abb. Abbildung

AM Amberlyst

BET S. Brunauer, P. H. Emmet und E. Teller

DVB Divinylbenzol

FTIR (Fourier Transform Infrared)-Spektroskopie

GC Gaschromatographie

GC-MS Gaschromatographie-Massenspektroskopie

ICP-AES Inductive Coupled Plasma-Atomic Emission Spectroscopy

Kap. Kapitel

Kat. Katalysator

MAS NMR Magic Angle Spinning-Nuclear Magnetic Resonance

MTBE Methyl-tert-butylether

NB Nitrobenzol

NR Nafion resin

RT Raumtemperatur

S Selektivität

SI Sulfolan

SAC Nafion-Silica-Nanocomposite

Tab. Tabelle

T Toluol