Aus dem Institut für Anatomie und Reproduktionsbiologie des Universitätsklinikums Aachen

(Direktor: Universitätsprofessor Dr. med. Dr. rer. nat. Henning M. Beier)

Zur Progesteron-abhängigen Differenzierung von Endometrium- und Brustkrebs-Zellen: Molekulare Konzepte und Implikationen für die Klinik

Von der Medizinischen Fakultät
der Rheinisch-Westfälischen Technischen Hochschule Aachen
genehmigte Habilitationsschrift zur Erlangung der
Venia legendi für das Fach
Anatomie und Reproduktionsbiologie

vorgelegt von

Dr. rer. nat. Claudia A. Krusche aus Kiel

Referenten: Universitätsprofessor Dr. med. Dr. rer. nat. Henning M. Beier

Universitätsprofessor Dr. med. Ruth Knüchel-Clarke

Universitätsprofessor Dr. med. Gerhard Aumüller, Marburg

Tag der Habilitation: 05. Dezember 2005

Fortschritte der Anatomie, Embryologie und Reproduktionsbiologie

Herausgeber

Prof. Dr. med. Dr. rer. nat. Henning M. Beier Direktor des Instituts für Anatomie und Reproduktionsbiologie der RWTH Aachen

Claudia Astrid Krusche

Zur Progesteron-abhängigen Differenzierung von Endometrium- und Brustkrebs-Zellen: Molekulare Konzepte und Implikationen für die Klinik

D 82 (Habil.-Schr. RWTH Aachen)

Shaker Verlag Aachen 2006

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Aachen, Techn. Hochsch., Habil.-Schr., 2005

Copyright Shaker Verlag 2006 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN-10: 3-8322-5117-0 ISBN-13: 978-3-8322-5117-8 ISSN 1436-8803

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9

Internet: www.shaker.de • eMail: info@shaker.de

1. EINLEITUNG	1
2. MATERIAL UND METHODEN	8
2.1 Tierexperimenteller Teil	8
2.1.1 Kaninchen und ihre Haltung	8
2.1.1.1 Applizierte Hormone und Hormon-Antagonisten	8
2.1.1.2 Versuchsgruppen	8
2.1.1.2.1 Versuchsgruppe I	9
2.1.1.2.2 Versuchsgruppe II	9
2.1.1.2.3 Versuchsgruppe III	10
2.1.1.2.4 Versuchsgruppe IV	10
2.1.1.2.5 Versuchsgruppe V	11
2.1.1.3 Organentnahme und Aufbereitung für die nachfolgende Analytik	12
2.1.1.4 Analyse der Hormon-Serumkonzentrationen	12
2.1.2. Rattenexperimente	13
2.1.2.1 Versuchsaufbau	13
2.1.2.2 Organentnahme und Aufbereitung der Gewebe für die Analysen	13
2.2 Akquisition von humanem Endometrium	13
2.2.1 Datierung	14
2.2.2 Trennung der endometrialen Zellpopulationen für die	
Primärzellkultur und zur RNA-Isolierung	14
2.2.3 Kultivierung von primären endometrialen Epithel- und Stroma-	
Zellen	14
2.3 Kultivierung der humanen T47D Brustkrebs-Zell-Linie	15
2.4 Molekularbiologische Methoden	16
2.4.1 Verwendete Chemikalien, Enzyme, Medien	16
2.4.2 RNA-Isolierung	17
2.4.2.1 RNA-Isolierung für das Northern Blotting	17
2.4.2.2 RNA-Isolierung für die Microarray-Hybridisierung	17
2.4.2.3 RNA-Isolierung für die semiquantitative RT-PCR	18
2.4.2.4 RNA-Isolierung für die Real time RT-PCR (LightCycler)	18
2.4.2.5 mRNA-Isolierung	18
2.4.3 Semiquantitative RT-PCR	19
2.4.3.1 Reverse Transkription	19
2.4.3.2 Die PCR-Reaktion	19
2.4.3.3 Gel-Elektrophorese und Auswertung	22
2.4.4 Real Time PCR-Reaktion	22
2.4.4.1 cDNA-Synthese	22
2.4.4.2 Real time-PCR	22
2.4.5 Herstellung von Sonden für die Northern Hybridisierung	24
2.4.5.1 Die Amplifikation der spezifischen Sequenzen mit RT-PCR	24
2.4.5.2 Ligation und Transformation	24
2.4.5.3 Die in-vitro-Transkription	25
2.4.5.4 Random-Priming der Aminopeptidase N-Sonde	25
2.4.5.5 Die 3`-Endmarkierung von Oligonukleotiden	25
2.4.6 Northern Hybridisierungen	26
2.4.6.1 Gel-Elektrophorese und Blot	26
2.4.6.2 Hybridisierungs- und Waschbedingungen	26
2.4.6.2.1 Uteroglobin	26
2.4.6.2.2 Aminopeptidase N	27

	~-
2.4.6.2.3 LGR4, LGR7 und HDAC-3	27
2.4.6.2.4 β-Actin	27
2.4.6.2.5 18S ribosomale RNA	27
2.4.6.3 Blot-Detektion	28
2.4.7 In-situ-Hybridisierung	28
2.4.8 Microarray-Hybridisierungen	29
2.4.8.1 MICROMAX Microarray mit T47D-Zellen	29
2.4.8.2 Genexpressionsanalyse des Ratten-Endometriums mittels	
Microarray-Technologie	30
2.4.9 TUNEL: Apoptose-Nachweis am Kaninchenuterus	30
2.5 Proteinbiochemische Methoden	31
2.5.1 Immunhistochemie	31
2.5.1.1 Kaninchen: Progesteron-Rezeptor und das Ki67-Antigen	31
2.5.1.2 Humane Gewebe	31
2.5.2 Western Blot	33
2.6 Statistik	34
3 ERGEBNISSE	35
3.1 Die Expression von Steroidhormon-Rezeptor-Cofaktoren, Histon-	35
Deacetylasen und Histon-Acetylasen im humanen Endometrium	•
3.1.1 Progesteron-Rezeptor-Cofaktoren	35
3.1.2 Die Histon-Deacetylase-1, -2 und -3 Expression im zyklischen	00
humanen Endometrium	38
3.1.3 Die mRNA Expression von Histon-Acetylasen im humanen	50
zyklischen Endometrium	47
3.2 Die Etablierung von Tiermodellen	50
3.2.1 Eine vergleichende mRNA Expressions-Analyse im Endometrium	50
von Ratte und Mensch:	50
3.2.2 Das Kaninchen als Tierversuchsmodell	53
	55
3.2.2.1 Charakterisierung der Progesteron-abhängigen Transformation des Kaninchen-Endometriums anhand verschiedener	
Markermoleküle	54
	54
3.2.2.2 Die endometriale Transformation von Gonadotropin-stimulierten	
Kaninchen als Modell für die beschleunigte endometriale	
Transformation des humanen Endometriums in der IVF-Therapie	55
3.3 Versuche zur Verzögerung der endometrialen Transformation nach	
Gonadotropin-Stimulation durch die Applikation des Progesteron-	
Rezeptor-Antagonisten Onapriston im Versuchstiermodell	
Kaninchen	59
3.3.1 Der Vergleich der Wirkung des Progesteron-Rezeptor-	
Antagonisten Onapriston auf das Endometrium von unstimulierten	
und Gonadotropin-(FSH-P)-stimulierten Kaninchen	59
3.3.2 Versuche mit ovarektomierten und hormonsubstituierten Tieren:	
Effekte von Onapriston auf das Endometrium von FSH-P-	
behandelten und unbehandelten Tieren	61
3.3.3 Die endometriale Differenzierung in FSH-P-stimulierten und	
unstimulierten Tieren nach der Applikation des Progesteron-	
Rezeptor-Antagonisten Onapriston am Tag 0 p.hCG	64
3.4 Die Expression von Orphan Rezeptoren im humanen zyklischen	
Endometrium	66

3.5 Die Regression des Kaninchen-Endometriums und der Corpora lutea am Ende der Pseudogravidität und unter der Gabe des	
Progesteron-Rezeptor-Antagonisten Onapriston an den Tagen 5-7	
p.hCG	75
3.5.1 Die Differenzierung und Regression des Kaninchen- Endometriums in der Pseudogravidität (d6-d20 p.hCG)	75
3.5.2 Endometriale Regression nach der Applikation des Progesteron-	
Rezeptor-Antagonisten Onapriston an den Tagen 5-7 p.hCG	83
3.6 Die Identifizierung von Progesteron-regulierten Genen in der T47D-	
Brustkrebs-Zell-Linie und die Analyse der Expression und Regulation	
dieser Gene im zyklischen humanen Endometrium	91
3.6.1 Charakterisierung der T47D Brustkrebs-Zell-Linie	91
3.6.2 Identifizierung von Gestagen-regulierten Genen in der T47D	
Brustkrebs-Zell-Linie durch die Microarray-Hybridisierung	94
3.6.3 Die Analyse der in der T47D-Brustkrebs-Zell-Linie durch das	
Gestagen Medroxyprogesteron-Acetat regulierten Gene im	
humanen zyklischen Endometrium	96
4. DISKUSSION	101
4.1 Das Konzept der Progesteron-Wirkung auf der molekularen Ebene	,101
4.1.1 Die Komponenten des Progesteron-Rezeptor-Komplexes: ihr	,
molekulares Zusammenspiel und ihre Wirkung auf die Gen-	
Expression	101
4.1.2 Die Expression der Progesteron-Rezeptor-Cofaktoren im	
humanen zyklischen Endometrium	105
4.1.2.1 Die p160/SRC-Coaktivatoren und zentrale Corepressoren	105
4.1.2.2 Histon-Deacetylasen und -Acetylasen	106
4.2 Die Etablierung optimaler Tiermodelle für reproduktionsbiologische	
Fragestellungen	109
4.2.1 Die Suche nach Genen, die im Endometrium von Ratte und	
Mensch durch Progesteron reguliert werden: Problematik der	
Spezies-Spezifität der Gen-Expression und -Regulation	110
4.2.2 Das Versuchstiermodell Kaninchen	113
4.2.2.1 Die Pseudogravidität des Kaninchens als Modell für den Prozeß	
der sekretorischen Transformation des humanen Endometrium in	
der Lutealphase	113
4.2.2.2 Die endometriale Transformation in Gonadotropin-stimulierten	
Kaninchen als Modellsystem für die beschleunigte Entwicklung	
des Endometriums in der humanen IVF-Therapie	115
4.2.3 Zusammenfassende Überlegungen zur Etablierung von	
Tiermodellen auf dem Hintergrund des molekularen Konzeptes der	
Progesteron-Wirkung	116
4.3 Die endometriale Transformation nach der Applikation des	
Progesteron-Rezeptor-Antagonisten Onapriston im Tiermodell	
Kaninchen: Versuche zur Verzögerung der endometrialen	
Differenzierung nach der Gonadotropin-Stimulation	118
4.3.1 Grundsätzliche Überlegungen zur Wahl des Versuchsdesigns und	
des Progesteron-Rezeptor-Antagonisten	118
4.3.2 Die endometriale Transformation in Gonadotropin-stimulierten und	
unstimulierten Kaninchen nach Gabe des Progesteron-Rezeptor-	
Antagonisten Onapriston	120

4.4 Die Differenzierung des humanen Endometrium unter den hormonellen und pharmakologischen Bedingungen der IVF-	125	
Therapie 4.5 Die Expression von Orphan-Rezeptoren im humanen Endometrium 4.6 Die Regression des Endometriums und der Corpora lutea am Ende		
der Pseudogravidität und unter der Gabe des Progesteron- Rezeptor-Antagonisten Onapriston an den Tagen 5-7 p.hCG: die		
Uterus-Ovar-Kopplung beim Kaninchen	137	
4.6.1 Die Regression des Kaninchen-Endometriums in der zweiten	400	
Hälfte der Pseudogravidität 4.6.2 Die Kopplung von Uterus und Ovar: Überlegungen zur Induktion	138	
der Corpus luteum-Regression durch endometriale Signale beim		
Kaninchen	143	
4.7 Die Regulation von Progesteron-abhängig exprimierten Genen in der T47D-Brustkrebs-Zell-Linie und im humanen Endometrium: Studien		
zur differentiellen Genregulation	147	
4.7.1 Die Progesteron-Rezeptor-Cofaktor-Expression und die Identifizierung von Gestagen-regulierten Genen in der T47D-	440	
Brustkrebs-Zell-Linie 4.7.2 Die Expression der in der T47D-Brustkrebs-Zell-Linie durch das	148	
Gestagen Medroxyprogesteron-Acetat regulierten Gene im		
humanen zyklischen Endometrium	152	
5. Zusammenfassung	154	
6. Literatur	157	
Liste der verwendeten Abkürzungen	182	