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Foreword

The field of petroleum engineering has changed radically the past 
decade.   The easy oil is produced, and new discoveries are often found 
at challenging locations. Examples are deeper waters, high pressure and 
high temperature regimes and at offshore locations.  This put higher 
demands on the design and the execution of the drilling operations. 

Pipe buckling is an issue that has many aspects.  For extended reach 
and horizontal wells the string is sometimes put in compression.  Too 
high axial force leads to stuck pipe and casing.  In particular coiled 
tubing operations suffers from buckling constraints. There is no doubt 
that the buckling of oil well tubulars is one of the key challenges for 
future advanced wells. 

A number of publications are written on pipe buckling. However, 
readers may become confused because the models often looks similar, 
but with a different scaling factor.  Which solution is correct and which 
is wrong?  The answer is that they are all correct based on their 
assumptions.  Furthermore, most of the published literature assumes a 
frictionless environment, and, they assume perfectly straight and 
symmetric tubulars.  This indicates that there is still work required to 
arrive at buckling models applicable for real wells. 

Dr. Mesfin Belayneh  analyzed published buckling literature to sort out 
these issues.  The results are presented in this book.  He has systemized 
the various approaches in a clear and concise way.  This makes this 
book even more important; it can be used to build new and more 
realistic models in the future.  Furthermore, the book contains new 
models never published before. I foresee that new or revised buckling 
solutions will be published in the years to come, with this book as an 
important reference. 



I will congratulate Dr. Belayneh for his work to analyze oil well 
buckling.  This book is a must for everyone challenging theoretical 
buckling issues. 

Stavanger, February 2006 
Bernt S. Aadnoy, PhD 

Professor of Petroleum Engineering 
University of Stavanger 
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Summary

A continuous application of axial load causes the tubulars to first 
buckle sinusoidally and then helically. Several models have been 
proposed for prediction of forces causing helical shape of tubular in 
vertical wells, inclined and horizontal wells and curved boreholes. 
However, there is no consensus of which models to be used for better 
predictions.

The comparison of the existing models with the experimental data 
shows that the models do not predict all the observed values 
consistently. The common element among the models is the Dawson 
Paslay’s critical sinusoidal load having different scaling constant . For 
instance Chen et al’s is (1.414), Wu et. al., (1.828), and Miska/Mitchel 
(2.828). The inconsistency in the model prediction could be due to the 
fact that the model assumes constant load and having constant 
coefficient . However, the experimental test results have shown that 
the load is displacement dependent. In this note, considering the 
laboratory and field observed displacement dependent loading 
situations; we have regenerated loading history by best least square 
polynomial fit. Using the fitting coefficients and the analytical model, 
we observed that the scaling factor coefficient, , being variable for the 
various experimental test results. In addition, the turning points of the 
gradient of the reconstructed loading history correspond to the helical 
buckling load.

To summarize: 

It has been reported by the earlier works that the scaling factor, 
, being constant for any testing conditions. However, in this 

work we analyzed that the scaling factor, , is not constant. It 
depends on load history and tubular dimensions. 
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The pitch length determination from Chen, and Miska results 
some unrealistic values for near-vertical inclined tube. For 
instance for the well inclination less than 8 degree.

The analysis of Lubiniski’s Load-pitch equation is applicable 
for a vertical tube. When applying for an inclined string, we 
obtain unrealistic value yielding the pitch length greater than 
the length of the test string itself. The determinations of pitch 
length with our analysis utilize all possible energies in the 
buckled tube. All results show the pitch length lower than the 
string length itself. The comparison of pitches show that both 
our analyses and that of Lubiniski’s are in agreement for 
vertical strings. For an inclined string we obtained some 
difference. Given the fact that Lubiniski’s pitch is correct for the 
vertical string, our pitch analysis is also acceptable. The 
advantage of our analysis is that it takes into account the effect 
of well inclination, contrary to Lubiniski. 

The applicability of the method-I (section 5.3.2.1) depends on 
the correctness of the input values (Sinusoidal displacement, 
Load).  

The application of graphical approach, Method-II (section 
5.3.2.2 in the main report), determines the buckling load. The 
method might be promising when running a full scale-buckling 
test. This method determines helical load, displacement and the 
helical pitch length.


