Fortschrittsberichte des Instituts für Tribologie und Energiewandlungsmaschinen

Band 4

Jens Berkan

Modellierung des Schlepp- und Startverhaltens von Verbrennungsmotoren bei tiefen Temperaturen

D 104 (Diss. TU Clausthal)

Shaker Verlag Aachen 2006

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Clausthal, Techn. Univ., Diss., 2005

Copyright Shaker Verlag 2006 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-4808-0 ISSN 1611-8154

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail:info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Entwicklungsingenieur bei der BMW Group und als wissenschaftlicher Mitarbeiter am Institut für Tribologie und Energiewandlungsmaschinen der Technischen Universität Clausthal.

Mein besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr.- Ing. Hubert Schwarze, für die wissenschaftliche Betreuung meiner Dissertation und die langjährige vertrauensvolle Zusammenarbeit.

Herrn Prof. Dr.- Ing. Hans-Peter Beck danke ich für sein Interesse an dieser Arbeit, die Übernahme des Koreferates und die damit verbundene Arbeit.

Der BMW Group und insbesondere meinen ehemaligen Kollegen Dr.- Ing. Michael Maurer, Heiko lamandi, Steffen Lutz, Sönke Richter, Manfred Schmid, Andreas Rau und Peter Schreger danke ich für ihre Unterstützung und die Bereitstellung von Komponenten und Daten.

Mein Dank gilt auch allen Mitarbeiterinnen und Mitarbeitern des Instituts für Tribologie und Energiewandlungsmaschinen. Im Einzelnen den Damen des Geschäftszimmers, den Mitarbeitern der mechanischen und elektronischen Werkstatt, den Kollegen für die zahlreichen konstruktiven Diskussionen und den Studien- und Diplomarbeitern.

Mein besonderer Dank für die tatkräftige Mithilfe bei der Durchführung und Auswertung der Messungen gilt Herrn Daniel Brenner, Joachim Rohde und Dennis Egler.

Ein ganz herzlicher Dank gebührt meiner Frau Kerstin und meinem Sohn Leon für ihr großes Verständnis und ihre uneingeschränkte Unterstützung bei der Erstellung dieser Arbeit.

Allen die mir zur Seite gestanden und mich unterstützt haben, ein herzliches "Dankeschön!"

Clausthal-Zellerfeld, im Dezember 2005

Inhaltsverzeichnis

Inhaltsverzeichnis	I
Formelzeichen, Benennungen, Einheiten	III
1. Einleitung	
1.1 Problemstellung	
1.2 Stand der Technik	
2 Reibleistungsanalyse und Modellbildung des Verbrennungsmotors	
2.1 Gaswechselarbeit und dynamisches Moment	
2.1.1 Anwendung der Bewegungsgleichungen auf Mehrzylindermotoren	
2.1.2 Analyse und Modellierung der Arbeitstakte	
2.1.3 Ansaugtakt	
2.1.4 Verdichtungstakt	
2.1.5 Einfluss der Gemischaufbereitung	42
2.1.6 Expansionstakt des geschleppten Motors	45
2.1.7 Expansionstakt des befeuerten Motors	47
2.1.8 Ausstoßtakt	57
2.2 Motorschleppmoment Grundmotor	57
2.2.1 Ölviskosität	
2.2.2 Grundmotor-Schleppmoment	59
2.2.3 Reibmoment oszillierender Bauteile	63
2.3 Schleppmoment Drehmomentwandler	64
2.4 Schleppmoment Nebenaggregate	66
2.5 Gleichgewichtsbedingungen	
2.6 Startverhalten und Anforderungen	69
2.7 Prüfstand und Messverfahren	70
2.7.1 Motoren- und Komponentenprüfstand	70
2.7.2 Schmierstoffuntersuchungen	72
3 Energiespeicher und elektrische Verbindung	73
3.1 Blei-Säure-Batterie	73
3.1.1 Batteriezustände	74
3.1.2 Chemische Grundreaktionen	74
3.1.3 Batteriemodelle	81
3.2 Doppelschichtkondensatoren	84
3.3 Vergleich zwischen Doppelschichtkondensatoren und Blei-Säure-Batterien	
3.4 Leitungen und Massenanbindung	

4 Elektrische Startermotoren	91
4.1 Gleichstrommaschine	92
4.2 Reihenschlussmaschine	97
4.3 Fremderregte Maschine	100
4.4 Arbeitspunkte	102
4.5 Drehfelderzeugung	103
4.6 Asynchronmaschine	104
4.7 Synchronmaschine	106
5 Messungen am Verbrennungsmotor	110
5.1 Vorversuche	
5.2 Messergebnisse	
5.2.1 Verdichtung und Polytropenexponent	111
5.2.2 Reibmoment Motor und Nebenaggregate	112
5.3 Messung an Startsystemen	
6 Berechnung und Simulation des Startverhaltens	116
6.1 Verbrennungsmotormodell	119
6.2 E-Maschinenmodell	121
6.3 Kopplungselemente	123
6.4 Ergebnisausgabe	125
6.5 Bedienung, Benutzeroberfläche und Konfigurationsebene	126
7 Berechnungsergebnisse und Vergleich Messung - Rechnung	
7.1 Kabelwiderstand	129
7.2 Ölsorten	136
7.3 Batterie und Doppelschichtkondensator	141
7.4 Startergenerator im Riementrieb	
7.5 Einfluss der Massenträgheit	
7.6 Kurbelwellenstartergenerator	151
7.7 Hochlauf und Zündung	152
7.8 Zusammenfassung der Variationsrechnungen	153
8 Zusammenfassung und Ausblick	156
9 Literaturverzeichnis	158
Anhang Messungen	166
A1 Messergebnisse aus Vorversuchen	166
A2 Messergebnisse mit Serienstarter	172

Formelzeichen, Benennungen, Einheiten

Formel- zeichen	Benennung	Einheiten
a a _{Zi}	Beschleunigung zylinderspezifische Kolbenbeschleunigung	[m/s²], [rad/s²] [m/s²], [rad/s²]
Α	Fläche	$[m^2]$
A_0	Fläche	[m²]
A_K	Kolbenfläche	[m ²]
Αö	Auslass öffnet	[°KW]
b_p	Polbreite	[mm]
В	magnetische Flussdichte	[T], [Wb/m ²], [V·s/m ²]
c_p	spezifische Wärmekapazität	[J/(g·K)], [kJ/(kg·K)]
С	Wärmekapazität	[J], [kJ]
C_{Masch}	Maschinenkonstante	[-]
C` _{Masch}	Maschinenkonstante	[-]
C ₁	Konstante	[F]
C ₁	Kapazität	0,41
C_2	Konstante	198
C_2	Kapazität	[F]
C_N	Kapazität	[Ah]
d	Durchmesser	[m], [mm]
D	Durchmesser	[m], [mm]
DoD	Entladungszustand	[%]
е	Eulerzahl	2,718281
e_0	Elementarladung	1,602·10 ⁻¹⁹ As
E	elektrische Feldstärke	[V/m]
Es	Einlass schließt	[°KW]
F	Kraft	[N]
F_{GAS}	Gaskraft auf den Kolben	[N]
Fĸ	Kolbenkraft in Zylinderachse	[N]
F_N	Normalkraft senkrecht auf Zylinderachse	[N]
F_R	Radialkomponente von F _S	[N]
Fs	Stangenkraft in Pleuelrichtung	[N]
F _T	Tangentialkomponente von F _S	[N]
G ^{0,S}	freie Reaktionsenthalpie	[J], [kJ]
h_{E}	spezifische Enthalpie	[J/kg], [kJ/kg]
h_A	spezifische Enthalpie	[J/kg], [kJ/kg]
h_{Leck}	spezifische Enthalpie	[J/kg], [kJ/kg]
Н	magnetische Feldstärke	[A/m]

$H^{0,S}$	Reaktionsenthalpie	[J], [kJ]
Hi	Enthalpiestrom	[kJ/°]
H _{Leck}	Enthalpie	[J], [kJ]
Hu	Unterer Heizwert	[J/g], [kJ/kg], [MJ/kg]
H _{U,Zyl.}	Verbrennungswärme im Zylinder	[J], [kJ]
H _{Zyl.}	Verdampfungsenthalpie im Zylinder	[J], [kJ]
_, 	Strom	[A]
I _A	Ankerstrom	[A]
l _E	Feldstrom	[A]
ĺ	Länge	[m]
L	Länge	[mm]
LA	Ankerinduktivität	[H], [Wb/A]
L _F	Feldinduktivität	[H], [Wb/A]
m	Masse	[g], [kg]
m*	Masse	[g], [kg]
m _E	Masse Luft, Einlass	[g], [kg]
m _A	Masse Luft, Auslass	[g], [kg]
m _{Leck}	Masse Leckage, Blow-By	[g], [kg]
m* _{Leck}	Masse Leckage, Blow-By	[g], [kg]
m _(ES)	Masse Brenngas im Zylinder bei E _S	[g], [kg]
M _B	Beschleunigungsmoment	[Nm]
M _D	Drehmoment	[Nm]
ME	Antriebsmoment elektrische Maschine	[Nm]
M_{EM}	Antriebsmoment Elektromotor	[Nm]
$M_{(ES)}$	Masse Luft im Zylinder bei Einlass schließt	[g]
M _{Ex}	dynamisches Expansionsmoment	[Nm]
M_{G}	Motorschleppmoment Grundreibung	[Nm]
M_{ges}	Gesamtschleppmoment	[Nm]
Mi	inneres Moment	[Nm]
M_{K}	dynamisches Kompressionsmoment	[Nm]
M _{Kraftstoff, Zyl.}	Masse Kraftstoff im Zylinder	[g]
M _{Luft,Zyl.}	Masse Brenngas im Zylinder	[g]
M_{MG}	Motorschleppmoment Grundreibung	[Nm]
$M_{n(i)}$	drehzahlabhängiges Drehmoment	[Nm]
M_N	Schleppmoment Nebenaggregate	[Nm]
M_{osz}	Kolbenreibmoment	[Nm]
$M_{(OT)}$	Masse Luft im Zylinder im OT	[g]
M_{VM}	Schleppmoment Verbrennungsmotor	[Nm]
n	Anzahl Teilchen	[-]
n	Drehzahl	[min ⁻¹ , s ⁻¹]
n	Polytropenexponent	[-]

n _{i,j}	Zellwert Drehzahl-Temperatur-Matrix	
• 1,,	Polytropenexponent	[-]
n*ĸ	korrigierter Polytropenexponent für Kompression	[-]
n* _F	korrigierter Polytropenexponent für Expansion	[-]
n ₀	Leerlaufdrehzahl	[min ⁻¹ , s ⁻¹]
n _d	Synchrondrehzahl	[min ⁻¹ , s ⁻¹]
n _{EM}	Drehzahl E-Maschine	[min ⁻¹ , s ⁻¹]
n _R	Zellenzahl	[-]
n _{th}	wärmebezogener Teilpolytropenexponent	[-]
n _m	massebezogener Teilpolytropenexponent	[-]
n _{VKM}	Drehzahl Verbrennungsmotor	[min ⁻¹ , s ⁻¹]
N _A	Avogadro-Konstante	6,023·10 ²³ /mol
N _E	Windungszahl	[-]
OT	oberer Totpunt	[°KW]
р	Druck	[N/m²], [bar]
p _z	Zylinderdruck	[N/m ²], [bar]
p	Polpaarzahl	[-]
p _u	Umgebungsdruck	[N/m²], [bar]
p _{i,j} (°KW)	Zellwert Drehzahl-Temperatur-Matrix	
	Druckverlauf	[N/m²], [bar]
p_{Zyl}	Druck im Zylinder	[N/m²], [bar]
Δp_V	Druckverlust	[N/m²], [bar]
P_{i}	innere Leistung	[W], [kW]
Q_B	Brennstoffwärme	[J], [kJ]
Q _{Verbr.}	Verbrennungswärme	[J], [kJ]
Q_W	Wandwärmeverluste	[J], [kJ]
Q_W^*	synthetische Wandwärmeverluste	[J], [kJ]
r	Radius	[mm]
R	allgemeine Gaskonstante	8,3143 J/(K·mol)
R1	Widerstand	[m Ω], [Ω]
R2	Widerstand	[m Ω], [Ω]
R_F	Feldwiderstand	[m Ω], [Ω]
R_{i}	Widerstand	[m Ω], [Ω]
$R_{i,ges}$	Summenwiderstand	[m Ω], [Ω]
R_L	Gesamtwiderstand	$[m\Omega]$, $[\Omega]$
$R_{m,F}$	magnetischer Widerstand	[A/(V·s)]
R _V	Widerstand	$[m\Omega], [\Omega]$
s	Schlupf	[-]
S	Wegstrecke	[m]
S	Hub	[mm]
SoC	Ladungszustand	[%]
	=	- -

S _{eff, max}	effektiver maximal wirksamer Hub	[mm]
S_{Zi}	zylinderspezifischer Hub	[mm]
t	Zeit	[s]
T	Temperatur	[°C], [°K]
ΔT	Temperaturdifferenz	[°C], [°K]
u	spezifische innere Energie	[J/kg], [kJ/kg]
u	Gleitgeschwindigkeit	[m/s]
u_K	Kolbengleitgeschwindigkeit	[m/s]
$u_{q,L}$	induzierte Spannung	[V]
$u_{q,W}$	induzierte Spannung	[V]
U	innere Energie	[J], [kJ]
U	Spannung	[V]
U_q	induzierte Spannung	[V]
$U_{q,LL}$	induzierte Leerlaufspannung	[V]
U_0	Gleichgewichtsspannung	[V]
U _{Starter}	Spannung	[V]
U _{Batt}	Spannung	[V]
UT	unterer Totpunkt	[°KW]
V	Geschwindigkeit	[m/s], [rad/s]
V_k	Kolbengeschwindigkeit	[m/s]
Vzi	zylinderspezifische Kolbengeschwindigkeit	[m/s], [rad/s]
V	Volumen	[m ³]
V_h	Hubvolumen	[m ³]
V _c	Schadvolumen	[m ³]
$V_{\text{heff, max}}$	effektives maximal wirksames Hubvolumen	[m ³]
W	Geschwindigkeit	[m/s]
W	Energie	[J], [kJ]
W_V	Verdichtungsarbeit	[J], [kJ]
\dot{V}	Fördermengenvolumenstrom	[m ³ /s]
\dot{V}_h	theoretisch maximaler Fördermengenvolumenstrom	[m ³ /s]
у	Spaltweite	[mm]
Z	Anzahl der Leiter	[-]
α	Wärmeübergangskoeffizient	$[W/(m^2 \cdot K)]$
α_{m}	Verlustfaktor für Blow-By	[-]
ε	Verdichtungsverhältnis	[-]
$\epsilon_{\text{eff, max}}$	maximales effektives volumetrisches	
	Verdichtungsverhältnis	[-]
γ	Schergefälle	[-]
η	dynamische Viskosität	[Pas], [Ns/m²]
Θ	Massenträgheitsmoment	[kgm²]

$\Theta_{ges,KW}$	Summe aller Massenträgheitsmomente,	
	auf die Kurbelwelle reduziert	[kgm²]
Θ	Durchflutung	[A]
κ	Isentropenexponent	1,41
λ	Pleuelstangenverhältnis	[-]
λ	Luft-Kraftstoffverhältnis	[-]
λ_{L}	Liefergrad	[-]
μ	absolute Permeabilität	[V·s/(A·m)]
μ_{r}	relative Permeabilität	[-]
μ_0	Permeabilitätskonstante	4·π·10 ⁻⁷ V·s/(A·m)
ξv	Drosselfaktor	[-]
π	Kreiskonstante	3,1415926
ρ	Dichte	[kg/m³]
τ	Schubspannung	$[N/m^2]$
φ	Drehwinkel	[°], [rad]
$\dot{\phi}$	Winkelgeschwindigkeit	[°/s], [rad/s]
\ddot{arphi}	Winkelbeschleunigung	[°/s²], [rad/s²]
$\ddot{oldsymbol{arphi}}_{EM}$	Winkelbeschleunigung E-Maschine	[°/s²], [rad/s²]
$\ddot{oldsymbol{arphi}}_{ges}$	Winkelbeschleunigung Gesamtsystem	[°/s²], [rad/s²]
$\ddot{oldsymbol{arphi}}_{\scriptscriptstyle VM}$	Winkelbeschleunigung Verbrennungsmotor	[°/s²], [rad/s²]
ϕ_{i}	zylinderspezifischer Drehwinkel	[°], [rad]
$\Delta\phi_i$	Drehwinkelversatz	[°], [rad]
ϕ_{m}	Phasenwinkel	[°], [rad]
ϕ_{el}	elektrischer Phasenwinkel	[°], [rad]
Φ	magnetischer Fluss	[Wb], [V·s]
Φ_{A}	Erregerfluss, Läufer	[Wb], [V·s]
Φ_{H}	Hauptfluss	[Wb], [V·s]
Φ_{P}	Erregerfluss, Feld	[Wb], [V·s]
Ψ	Anlenkwinkel	[°], [rad]
ω	Winkelgeschwindigkeit	[rad/s]
$\dot{\omega}$	Winkelbeschleunigung	[rad/s ²]