Untersuchung von Schweißeigenspannungen an Aluminiumkonstruktionen

Stefan Allmeier

Vollständiger Abdruck der von der Fakultät für Bauingenieur- und Vermessungswesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor - Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. H. Kreuzinger

Prüfer der Dissertation:

- 1. Univ.-Prof. Dr.-Ing. Dr.-Ing. habil. D. Kosteas
- 2. Hon.-Prof. Dr.-Ing. Prof. h.c. D. Böhme,

Univ. GH Duisburg-Essen

3. Univ.-Prof. Dr.-Ing. G. Albrecht

Die Dissertation wurde am 24.08.2004 bei der Technischen Universität München eingereicht und durch die Fakultät für Bauingenieur- und Vermessungswesen am 25.02.2005 angenommen.

Berichte aus dem Bauwesen

Stefan Allmeier

Untersuchung von Schweißeigenspannungen an Aluminiumkonstruktionen

Shaker Verlag Aachen 2005

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie: detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de.abrufbar.

Zugl.: München, Techn. Univ., Diss., 2005

Copyright Shaker Verlag 2005 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-4163-9 ISSN 0945-067X

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9

Internet: www.shaker.de • eMail: info@shaker.de

Kurzfassung

In dieser Arbeit wird die Ausbildung der Schweißeigenspannungen unter Berücksichtigung verschiedener Randbedingungen wie Einspanngrad, Blechdicke, Geometrie, Legierungstyp und Schweißgeschwindigkeit mittels Simulationsberechnungen untersucht. Grundlage dieser Berechnungen sind als Eingangsdaten Temperaturverläufe während des Schweißprozesses und temperaturabhängige Materialkennwerte. Für die Kalibrierung des Temperaturfeldes wurden die Temperaturzyklen zahlreicher Schweißversuche mittels Thermoelemente aufgezeichnet. Als Materialkennwerte dienten sowohl eigene Messungen als auch Daten aus der Literatur. Auf Grundlage dieser Eingangsdaten wurde eine erfolgreiche Validierung der errechneten Spannungsverläufe mit Messergebnissen aus der Literatur vorgenommen. Anschließend konnten mit dem kommerziellen Programm Sysweld® Variantenrechnungen durchgeführt werden, die auch Erklärungen und Hinweise für die Entwicklung der Eigenspannungen während und nach dem Schweißen von Aluminiumkonstruktionen liefern.

Abstract

In this work the influence of various situations as constraints, plate thickness, geometry, alloy and welding speed on residual stress is investigated by means of simulation. Essential for the calculation are the temperature curves during the welding process and the temperature-dependent material data. For the calibration of the temperature field temperature cycles of many welding tests are measured. For this purpose both bibliografical data and data of the own measurement are used. On the base of this input data a successful validation of the residual stress curves could be done. The different variants could then be calculated with the commercial simulation program Sysweld[®], which also gives explanations and indications for the development of the residual stress during and after the welding of aluminium constructions.

Danksagung

Wenn man sich am Ende der Arbeit die einzelnen Arbeitsschritte und Phasen nochmals vergegenwärtigt, wird einem erst deutlich, wie viele Personen daran mitgewirkt haben und ohne deren Hilfe diese Arbeit gar nicht möglich gewesen wäre.

Aus diesem Grunde möchte ich mich an dieser Stelle nochmals ganz herzlich bei meinem Doktorvater, Herrn Prof. Kosteas, Fachgebiet für Leichtmetallbau und Ermüdung, Herrn Prof. Böhme, Leiter der SLV München und Herrn Prof. Albrecht, Lehrstuhl für Stahlbau an der TU München, für ihre fachliche Unterstützung und Beratung bedanken. An dieser Stelle möchte ich auch Herrn Prof. Kreuzinger für die Übernahme des Vorsitzes der Prüfungskomission danken.

Darüber hinaus möchte ich mich bei Herrn Dr. Nentwig, ehemals Leiter der Abteilung FuE der SLV München und Frau Dr. Cramer, Abteilungsleiterin, für die Ermöglichung einer solchen Arbeit bedanken.

Für die Ausführungen der praktischen Tätigkeiten bin ich Herrn Rosenberg von der SLV München für sein Einbringen von Erfahrungen und Tatkraft bei den Temperaturmessungen und Herrn Baum für die Übermittlung seiner schweißtechnischen Kenntnisse zu größtem Dank verpflichtet.

Von Seiten der virtuellen Arbeiten ist der Fa. ESI zu danken, vertreten durch die sehr engagierten Mitarbeiter Herrn Porzner und Herrn Vogel, die immer mit Rat und Tat zur Seite standen und ohne deren Hilfe eine fundierte und aussagefähige Simulation in diesem Zeitrahmen undenkbar gewesen wäre.

Auch möchte ich mich bei Herrn Dr. Krause, Krause Software GmbH Berlin, für die sehr anregenden und aufschlussreichen Diskussionen danken, die mich immer wieder zu neuen Überlegungen und Anstrengungen anspornten.

Wenn die Feiertage und Urlaube eher mit Simulationsarbeiten verbracht werden als mit der Familie, dann erfordert dies auch von der Familie allergrößtes Verständnis und Toleranz. Dafür bedanke ich mich besonders bei meiner Frau Petra und meinen Kindern Simon und Nina, ohne deren Unterstützung und Akzeptanz das ganze Unterfangen erst gar nicht möglich gewesen wäre.

Untersuchung von Schweißeigenspannungen an Aluminiumkonstruktionen

Recht herzlichen Dank sage ich auch meinem Diplomanden Herrn Salvatore und allen Praktikanten, sowie den vielen hier Ungenannten, die mir durch Ihren tatkräftigen Einsatz sehr geholfen haben.

München, im Juni 2005

Stefan Allmeier

<u>Inhaltsverzeichnis</u>

Form	Formelzeichen, Abkürzungen		
1.	Einleitung	1	
1.1	Motivation und Problemstellung	1	
1.2	Stand der Technik	3	
1.2.1	Aluminium	4	
1.2.2	Schweißverfahren	5	
1.2.3	Schweißen und Schweißeigenspannungen	8	
1.2.4	FEM-Simulation	16	
1.3	Konstruktionssimulation	28	
1.3.1	Einführung in die FEM	28	
1.3.2	Eigenschaften von SYSWELD	31	
1.3.3	Erweiterte Rechenmöglichkeiten	33	
2.	Zielstellung	34	
2.1	Schweißeigenspannung	34	
2.2	Abkühlverhalten und temperaturabhängige Materialkennwerte	34	
3.	Temperaturmessung	35	
3.1	Versuchsdurchführung	35	
3.2	Auswertung	39	
3.2.1	MIG-Verfahren	41	
3.2.2	WIG-Verfahren	44	
3.3	Graphische Auswertung	47	
3.4	Vergleich Messung – Berechnung nach Rykalin	53	
3.4.1	MIG-Schweißung	54	
3.4.2	WIG-Schweißung	55	

4.	Werkstoffkennwerte	56
4.1	Ermittlung der Kennwerte	56
4.2	Graphische Auswertung / Vergleich	57
5.	Modellierung eines Schweißprozesses	61
5.1	Preprocessing	61
5.2	Solver / Gleichungslöser	65
5.3	Postprocessing	66
6.	Eigenspannungsberechnung	68
6.1	Temperaturfeldberechnung	68
6.2	Eigenspannungen	71
6.3	Variantenrechnungen	72
6.3.1	Vergleich Geometrie	73
6.3.2	Vergleich Einspanngrad	74
6.3.3	Vergleich Blechdicke	75
6.3.4	Vergleich Bauteilgröße	75
6.3.5	Vergleich Legierung	77
6.3.6	Vergleich Schweißverfahren MIG – WIG	77
6.4	Auswertung	81
6.4.1	Simulationsergebnisse	81
6.4.2	Bewertung der Eigenspannungen	88
6.4.3	Berechnungsergebnisse	89
6.4.4	Maßgebende Einflussparameter	90
6.4.5	Einfluss der Nahtgeometrie	91
6.4.6	Einfluss bei Veränderungen der Randbedingungen	92
6.4.7	FE-Modellierung	93
7.	Ergebnisse und Diskussion	94
7.1	Temperaturverlauf bei MIG-/WIG-Schweißungen	94
7.2	Streckenenergie	95
7.3	Werkstoffe	96

Untersuchung von Schweißeigenspannungen an Aluminiumkonstruktionen

7.4	Simulation	97
7.4.1	Grenzen der Simulation	97
7.4.2	Vorteile der Simulation	98
7.5	Eigenspannungen	99
7.6	Stabilität	102
7.7	Sonstige Einflüsse auf Eigenspannungen	102
8.	Zusammenfassung	103
8.1	Allgemein	103
8.2	Ausblick	105
9.	Verzeichnisse	106
9.1	Formeln	106
9.2	Tabellen	106
9.3	Bilder	107
10.	Literatur	110

Formelzeichen, Abkürzungen

A) Lebensdauerberechnung

Formelzeichen, Abkürzung	Dimension	Benennung
$\Delta\sigma_c$	[N/mm²]	Charakteristische Ermüdungs- festigkeit bei 2 Millionen Span- nungszyklen
σ_{max} ; σ_{min}	[N/mm²]	größte und kleinste Werte der Spannungsschwingbreite
R; κ		Mittelspannungsverhältnis
$f(R)$; $f(\kappa)$		Bonusfaktor
N		Anzahl der Spannungsspiele

B) Thermische Berechnung

Formelzeichen, Abkürzung	Dimension	Benennung
α_r ; α_k	[cal cm ⁻² s ⁻¹ K ⁻¹]	Wärmeübergangszahlen bei Strahlung und Konvektion
ε		Absorptionsvermögen
γ	[g/cm ⁻³]	Dichte
η_{u}		effektiver Wirkungsgrad
λ	[cal cm ⁻¹ s ⁻¹ K ⁻¹] [J mm ⁻¹ s ⁻¹ K ⁻¹]	Wärmeleitfähigkeit
δΤ	[K]	Temperaturdifferenz
δχ	[mm]	Abstand von Punkt 1 zu Punkt 2
а	[cm²/s]	Temperaturleitzahl
af	[mm]	vordere Halbachse der Goldak- Wärmequelle

Formelzeichen, Abkürzung	Dimension	Benennung
ar	[mm]	hintere Halbachse der Goldak- Wärmequelle
b	[mm]	Breite der Goldak-Wärmequelle
С	[cal g ⁻¹ K ⁻¹] [J kg ⁻¹ K ⁻¹]	spezifische Wärme
С	[mm]	Tiefe der Goldak-Wärmequelle
C_0	[cal cm ⁻² s ⁻¹ K ⁻⁴]	Stefan-Boltzmann-Konstante
С	[cal cm ⁻² s ⁻¹ K ⁻⁴]	Strahlungszahl
сү	[cal cm ⁻³ K ⁻¹]	Wärmekapazität
d	[mm]	Blechdicke
1	[A]	Schweißstrom
q	[cal cm ⁻² s ⁻¹]	Wärmestromdichte
q_s	[cal cm ⁻² s ⁻¹]	Wärmestromdichte in der Richtung s-s
q	[J/ mm]	Streckenenergie
Qf	[W/mm³]	Wärmequelldichte der vorderen Hälfte der Goldak-Wärmequelle
Qr	[W/mm³]	Wärmequelldichte der hinteren Hälfte der Goldak-Wärmequelle
q_r ; q_k	[cal cm ⁻² s ⁻¹]	Wärmestromdichte des Wärme- austausches durch Strahlung und Konvektion
Q_{u}	[cal/s] [W]	Effektivleistung
R	[mm]	Abstand eines Punktes zur Wärmequelle
Т	[°C] [K]	Temperatur
t	[s]	Zeit
T ₀	[°C] [K]	Temperatur des umgebenden Mittels, Anfangstemperatur des festen Körpers

Formelzeichen, Abkürzung	Dimension	Benennung
$t_{x/y}$	[s]	Abkühlzeit von Temperatur x auf Temperatur y
U	[V]	Schweißspannung
V	[cm/ min] [mm/s]	Schweißgeschwindigkeit
x, y, z	[mm]	Rechtwinklige Koordinaten

C) Mechanische Berechnung

Formelzeichen, Abkürzung	Dimension	Benennung
α	1/K	Ausdehnungskoeffizient
ε		Dehnung
μ		Querkontraktion
σ _F	[N/mm²]	Fließspannung
σ_{xx}	[N/mm²]	Längs-Normalspannung
σ_{yy}	[N/mm²]	Quer-Normalspannung
τ	[s]	Zeit
E-Modul	[N/mm²]	Elastizitätsmodul
f _{0,2}	[N/mm²]	0,2% - Fließspannung
F	[N] [kN]	Kraft
L/ B	[mm]	Bauteillänge/ Bauteilbreite
Р		Phasenanteil
P_{eq}		Gleichgewichtsphasenanteil
t	[mm]	Blechdicke

D) Finite-Elemente-Berechnung

Formelzeichen, Abkürzung	Benennung
2D	zweidimensional
3D	dreidimensional
ВВ	Bandbreite
BFGS	Gleichungslöser Broyden-Fletcher-Goldfarb-Shanno (Quasi-Newton Methode)
FEM	Finite-Elemente-Methode
FG	Freiheitsgrade
K	Steifigkeitsmatrix
p	Lastvektor
PC	Personalcomputer
TH. II. O.	Theorie zweiter Ordnung
V	Verschiebungsvektor
X	Rechenaufwand
ZS	Zeitschritte

E) Schweiß-/ Werkstofftechnik

Formelzeichen, Abkürzung	Benennung
AC	Wechselstrom
Al	Aluminium
Ar	Argon
DC	Gleichstrom
He	Helium
I-Stoß	Stumpfe Schweißnahtverbindung ohne Vorbereitung der Kanten
MAG	Metall-Aktivgasschweißen
Mg	Magnesium
MIG	Metall-Inertgasschweißen
Mn	Mangan
MSG	Metall-Schutzgasschweißen
O/H 111	weich
Si	Silizium
Т6	Lösungsgeglüht und warm ausgelagert
T-Stoß	Kehlnaht an einer T-förmigen Verbindung
Ü-Stoß	Kehlnaht an einer Überlappverbindung
WC 20	Wolframelektrodentyp mit ca. 2% CeO ₂
WEZ	Wärmeeinflusszone
WIG	Wolfram-Inertgasschweißen

F) Normung

Formelzeichen, Abkürzung	Benennung
DIN	Deutsche Industrie Norm
EC	Eurocode
prEN	Vornorm für Eurocode

G) Firmen-/ Institutsbezeichnungen

Formelzeichen, Abkürzung	Benennung
ESI	Engineering System International
SLV	Schweißtechnische Lehr- und Versuchsanstalt
TUM	Technische Universität München