Strukturelle Analyse von Stoffwechselnetzen illustriert am bakteriellen Redox- und Zentralstoffwechsel

Von der Fakultät Maschinenbau der Universität Stuttgart zur Erlangung der Würde eines Doktors der Ingenieurwissenschaften (Dr. Ing.) genehmigte Abhandlung

Vorgelegt von

Diplom-Systemwissenschaftler Steffen Klamt

aus Magdeburg

Hauptberichter: Prof. Dr. h.c. mult. E. D. Gilles

Mitberichter: Prof. Dr. Stefan Schuster

Tag der mündlichen Prüfung: 22.03.2005

Institut für Systemdynamik und Regelungstechnik der Universität Stuttgart 2005

Forschungsberichte aus dem Max-Planck-Institut für Dynamik komplexer technischer Systeme

Band 9

Steffen Klamt

Strukturelle Analyse von Stoffwechselnetzen illustriert am bakteriellen Redox- und Zentralstoffwechsel

D 93 (Diss. Universität Stuttgart)

Shaker Verlag Aachen 2005

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Stuttgart, Univ., Diss., 2005

Copyright Shaker Verlag 2005 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-3976-6 ISSN 1439-4804

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9

Internet: www.shaker.de • eMail: info@shaker.de

Vorwort

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg.

Die Rahmenbedingungen am Max-Planck-Institut waren ideal. Meinen besonderen Dank richte ich an Prof. Ernst Dieter Gilles für die wissenschaftliche Betreuung und für die angenehme Arbeitsatmosphäre, die er durch den aufgeschlossenen Umgang mit seinen Mitarbeitern schafft. Die wissenschaftliche Freiheit, die mir unter seiner Regie vergönnt war, hatte einen entscheidenden Anteil daran, daß die Arbeit in der vorliegenden Form entstehen konnte.

Ebenfalls in ganz besonderem Maße danke ich dem Mitberichter Prof. Stefan Schuster (Universität Jena). Er lenkte damals meine Aufmerksamkeit auf das spannende Gebiet der Strukturanalyse zellulärer Netzwerke und schuf letztlich mit seinen Vorarbeiten überhaupt die Grundlage für wesentliche Inhalte dieser Arbeit. Viele gemeinsame Diskussionen waren für diese Promotion unentbehrlich.

Danken möchte ich auch den Kollegen vom MPI Magdeburg für das jederzeit freundschaftliche und stimulierende Arbeitsklima, was letztlich auch in viele gemeinsame Stunden nach getaner Arbeit mündete. Hervorheben möchte und kann ich hier nur jene, mit denen ich wissenschaftlich direkt zusammengearbeitet habe.

Prof. Dietrich Flockerzi stand mir oft in heiklen Fragen der linearen Algebra zur Seite, wodurch so manches in mathematisch präzisere Form kam. Viele theoretische Betrachtungen
über Elementarmoden entstanden in enger Zusammenarbeit mit Dr. Jörg Stelling. Martin
Ginkel half mir beim Optimieren von Teilen des Programmcodes im FluxAnalyzer. Dr. Hartmut Grammel weckte mein Interesse für die Rhodospirillen und war mein ständiger Ansprech- und Diskussionspartner bei Fragen rund um diese faszinierenden Organismen. Viele
Daten und Ergebnisse aus Experimenten, die er zusammen mit Dr. Ruxandra Rehner und
Andrea Focke durchführte, flossen in die vorliegende Arbeit ein.

Dank der exzellenten Kaffeemaschine von Renate Müller konnte ich jeden Arbeitstag mit einer Tasse frisch gebrühten Kaffees beginnen. Jeder Wissenschaftler weiß, was das bedeutet.

Last but not least danke ich meiner Familie. Die lange Unterstützung und Förderung meiner Eltern brachte mich überhaupt in die Situation, das Unterfangen einer Promotion angehen zu können. Meinen speziellen Dank richte ich an meine beiden Frauen: An Grit, für Liebe, Rückhalt und Unterstützung – nicht nur während der Promotion. Und an Svenja, weil sie mich mit leuchtenden Kinderaugen und natürlicher Selbstverständlichkeit immer daran erinnert, daß auch die einfachen Dinge des Lebens größte Freude bereiten.

Magdeburg, April 2005

Steffen Klamt

Für Svenja und Grit

Inhaltsverzeichnis

1	E	INFÜ	HRUNG UND ÜBERSICHT	1
2	G	RUN	DLAGEN STRUKTURELLER ANALYSEN IN STOFFWECHSELNETZEN	5
	2.1	Stof	Twechselnetze und ihre mathematische Beschreibung	5
	2.2	Stru	kturbasierte Aussagen zur Existenz, Stabilität und Eindeutigkeit von stationären Zuständen	10
	2.3	Grap	shentheoretische Strukturanalysen	11
	2.4	Stati	onitre Flußwerteilungen.	15
	2	4.1	Nullraum der stöchlometrischen Matrix	15
	2	4.2	Optimale Flußverteilungen – Flux Balance Analysis	17
	2	4.3	Elementarmoden und Metabole Pathwayanalyse	18
	2	4.4	Theoretische Eigenschaften der Elementarmoden, konvexer Flußkegel und Vergleich mit	
			extremen Pathways	
	2	4.5	Metabole Flußanalyse	
	2.5		dtungsrelationen	
	2.6	Znsi	rmmenfassende Übersicht über metabole Strukturanalysen	31
3	Z	WEI	AUSGEWÄHLTE MODELLSYSTEME DES BAKTERIELLEN ZENTRAL- UND	
_			DFFWECHSELS	33
	3.1	Orga	arrisation des Stoffwechsels in Bakterien.	33
	3.2	Netz	modell für Stoffwechsel in Escherichia coli	35
	3.3	Netz	modell für Stoffwechsel in schwefelfreien Purpurbakterien (Rhodospirillocese)	36
4	F	LUX	ANALYZER: COMPUTERGESTÜTZTE ANALYSE VON STOFFWECHSELNETZEN.	41
	4.1	Mot	ivation	41
	4.2		zeption des FluxAvalyzers: Netzwerk-Projekte und interaktive Flußkarten	
	4.3		struktion eines Netzwerk-Projektes	
	4.4	Too	box: Struktur-, Pathway- und Flußanalyse in Stoffwechselnetzen	46
5	В	ERE	CHENBARKEIT VON STATIONÄREN FLÜSSEN IN STOFFWECHSELNETZEN	55
	5.L	Ben	rchenbarkeit und Redundanz in metabolen Flußanalysen	55
	5.	1.1	Klassifikation von Szenarien: Bestimmtheit und Redundanz	56
	5.	1.2	Klassifikation von Raten: Spezifische Berechenbarkeit und Redundanz	
	5.	1.3	Unisetzung im Plux Analyzec	
	5.	1.4	Beispiele	60
	5.2	Ven	allgemeinerte Berechenbackeitsanalyse in stationären Reaktionsnetzwecken	61
	5.3	Para	illelen mit der Beobachsbarkeitsanalyse in der Regelungstechnik	65
	5.4	Real	lisierbackeit eines Flußszenarios	66
	5.5	Anv	endungsbeispiel: Redoxbalance im Stoffwechsel der Rhodospirilloceae	
	5.	5.1	Reduktionsgrad des Substrats, Biomasseausbeute und Netto-CO ₂ -Freisetzung	
	5.5	5.2	Bedeutung des Calvin-Zyklus für die Redoxbalance.	
	5.	5.3	Zusammenhang zwischen Calvin-Zyklus und reduktivern/oxidativern. TCA	
	5.5	5.4	Calvin-Zyklus, Transhydrogenase und oxidativer Pentosephosphat-Weg	
		5.5	Verallgemeinerte Berechenbarkeitsanalyse für phototrophes Wachstum	
	5.	5.6	Chemotrophes Wachstum unter aeroben Bedingungen	77
6	K	омі	SINATORISCHE ELEMENTARMODENANALYSE	79
	6.1	Spec	rifische Selektion einer Teilmense von Elementarmoden	79

	6.2	Flexibilität des Netzes und Relevanz einer Reaktion für vorgegebene Umweltbedingungen	
	6.	2.1 Relative Auftrittshäufigkeiten von Reaktionen und Flexibilität eines Szenarios	80
	6.	2.2 Anwendung auf E. coli: Wachstum auf verschiedenen Substraten	83
	6.	 Anwendung f ür Rhodospirillaceae: Phototropher und respirativer Stoffwechsel auf 	
		verschiedenen Substraten	87
	6.3	Gewichtete Relevanzen.	
	6.4	Strukturelle Kopplungen zwischen Reaktionen	
	6.5	Kombinatorische Elementarmodenanalyse im Fluotwalyzer	99
7	N	IINIMALE SCHNITTMENGEN: ELEMENTARE FEHLERMODEN UND EFFIZIENTE	
E	ING	RIFFE IN METABOLEN REAKTIONSNETZWERKEN	101
	7.1	Definition won minimalen Schnitten	101
	7.2	Algorithmus zur Berechnung minimaler Schnittmengen	104
	7.3	Anwendungen	
	7.	3.1 Identifikation von Targets zur Unterdrückung zellulärer Funktionen	108
	7.	3.2 Falsifikation der Netzstruktur und Mutanten-Phänotyp-Prädiktionen	108
	7.	3.3 Strukturelle Fragilität und Robustheit	110
	7.	3.4 Minimale Meßkombinationen	
		3.5 Elimination von Erhaltungsrelationen	
		Minimale Schnittmengen in der Risikoanalyse und Graphentheorie	
8	K	OMBINATORISCHE KOMPLEXITÄT DER ELEMENTARMODENBESTIMMUNG	117
	8.1	Maximal mögliche Anzahl von Elementannoden.	117
	8.2	Realistische Netze: $S \Leftrightarrow S_{max}$	119
	8.3	Rechmanfward	122
9	v	ON DER STRUKTUR ZUR DYNAMIK: MODELLIERUNG DER ELEKTRONENTRANS-	
P		KETTE UND DER REDOXREGULATION IN PHOTOSYNTHETISCHEN BAKTERIEN	
	9.1	Physiologie und Modellierung der Elektronentransportkette	125
	9.	1.1 Die Elektronentransponkette der Rhodospirilloceue	
	9.	1.2 Operationsweisen der Elektronentransportkette: Elementarmoden	
	9.	1.3 Dynamisches Modell der Elektronentransportkette	
	9.2		
	9.3	Modellstudien	139
	9.	3.1 Simulationen für verschiedene Sauerstoffkonzentrationen und Lichtintensitäten	139
	9.	3.2 Der Redoxzustand des Ubichinons als integrierendes Signal	143
	9.	3.3 Zusammenfassung zum dynamischen Modell der ETK	146
16) Z	USAMMENFASSUNG/SUMMARY	147
	NTER A	NG	
Λ			
		ang A: Stoffwechselnetze Escherickia coli und Rhodospirillaceae	
		ang B: E. coli Deletionsstudien	173
	Anh	ang C: Elementarmodas mit phototrophem Wachstum der Rhodospirillocese auf Acetat	
	4-1	ohne Einbeziehung des Citramalat-Zyklus	
		ang D: Beispiel zur Berechnung einer gewichteten Relevanz	176
	Anh	ang E: Theoretische und gemessene Transkriptverhältnisse von Genen des Zentralstoffwechsels in	170
	4-1-	E. coli für die Substratpsare Acetat/Glucose und Glycerin/Glucose ang F: Dynamisches Modell der Elektronentransportkette der Rhodospirillacese	
	Ann	ang P: Dynamisches Modell der Elektronentransportkette der Knowspirinscese	