Schriften aus dem Institut für Medizinische Mikrobiologie des Klinikums der Johann Wolfgang Goethe-Universität Frankfurt am Main

Band 2

Klaus-Peter Hunfeld

Contributions to Seroepidemiology,
Diagnosis, and Antimicrobial Susceptibility of
Borrelia, Ehrlichia, and Babesia as
Indigenous Tick-conducted Pathogens

Shaker Verlag Aachen 2004

Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at http://dnb.ddb.de.

Priv.-Doz. Dr. med. Klaus-Peter Hunfeld Institut für Medizinische Mikrobiologie Universitätsklinikum Frankfurt/Main Paul-Ehrlich-Str. 40 D-60596 Frankfurt/Main K.Hunfeld@em.uni-frankfurt.de

Copyright Shaker Verlag 2004

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

Printed in Germany.

ISBN 3-8322-3347-4 ISSN 1614-7758

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9

1 Holic. 0049/2407/9390-0 • Teletax. 0049/2407/9390-9

Internet: www.shaker.de • eMail: info@shaker.de

Contents

		Page
A.	Introduction	1
A.1.	Emergence of tick-transmitted diseases	1
A.1.1.	Borrelia, Ehrlichia, and Babesia:	
	Pathogens of increasing medical relevance in Europe	3
A.2.	B. burgdorferi: the causative pathogen of Lyme disease (LD)	5
A.2.1	Taxonomy, genetic diversity, and microbiologic properties of	
	B. burgdorferi	5
A.2.2.	Epidemiology of LD in Europe	8
A.2.3.	Clinical manifestations	11
A.2.4.	Microbiological diagnosis	15
A.2.5.	Treatment and antimicrobial susceptibility patterns	22
A.3.	Granulocytic Ehrlichia spp. the causative pathogens of	
	Human Granulocytic Ehrlichiosis (HGE)	25
A.3.1.	Taxonomy, genetic diversity, and microbiologic properties	
	of Ehrlichia spp.	25
A.3.2.	Epidemiology	27
A.3.3.	Clinical manifestations	29
A.3.4.	Microbiological diagnosis	31
A.3.5.	Treatment options and antimicrobial susceptibility pattern	33
A.4.	B. microti and B. divergens: the causative pathogens of human bab	pesiosis 34
A.4.1.	Taxonomy, genetic diversity, and microbiologic properties of the	genus
	Babesia	34
A.4.2.	Epidemiology	36
A.4.3.	Clinical disease manifestation	37
A.4.4.	Microbiological diagnosis	39
A.4.5.	Treatment and antimicrobial susceptibility patterns	41
A.5.	Aims of the investigations summarised in this thesis	42

II Contents

		Page
В.	Results	43
B.1.	Molecular characterisation of tick-borne microrganisms	43
B.1.1	B. burgdorferi isolates	43
B.1.2.	E. phagocytophila isolates	46
B.1.3.	B. microti and B. divergens isolates	47
B.2.	Evaluation of serological assays used for seroepidemiological investi-	
	gations and the laboratory diagnosis of human LD, ehrlichiosis,	
	and babesiosis	48
B.2.1.	Evaluation of a newly-developed recombinant ELISA (RE) for the	
	detection of anti-B. burgdorferi IgG- and IgM-antibodies	48
B.2.1.1.	Test sensitivity	49
B.2.1.2.	Test specificity	49
B.2.1.3.	Comparison with an established whole cell ELISA	50
B.2.1.4.	Test performance	52
B.2.2.	Systematic evaluation of diagnostic quality of LD serology:	
	Results from the German proficiency testing program 1999-2001	52
B.2.2.1.	Participating laboratories	52
B.2.2.2.	Applied test systems	53
B.2.2.3.	Accuracy of test results	54
B.2.2.4.	False positive and false negative test results and evaluation of test	
	kit quality	62
B.2.3.	Evaluation of and seroepidemiological investigations with a diagnostic	
	IFA for the detection of IgG- and IgM-antibodies against E. phagocyto-	
	phila.	64
B.2.3.1.	Determination of cut-off titers and evaluation of test specificity	64

Contents III

		Page
B.2.3.2.	Seroprevalence of antibodies against E. phagocytophila in patients	
	with LD	66
B.2.3.3.	Seropositive individuals without symptoms of active LD	67
B.2.3.4.	Statistical analysis	67
B.2.3.5.	Incidence and prevalence of <i>E. phagocytophila</i> in young healthy Germa	n
	subjects	67
B.2.4.	Evaluation of and seroepidemiological investigations with a diagnostic	
	IFA for the detection of antibodies against <i>B. microti</i> and <i>B. divergens</i>	69
B.2.4.1	Determination of cut-off titers and evaluation of test specificity	69
B.2.4.2.	Seroprevalence of B. microti and B. divergens antibodies in tick-exposed	d
	individuals and healthy controls	74
B.2.4.2.1.	Patients with EM	74
B.2.4.2.2.	Individuals with positive borreliosis serology but lacking clinical	
	symptoms of active LD	74
B.2.4.2.3.	Patients with a history of tick bite	74
B.2.4.2.4.	Statistical analysis	76
B.3.	Investigations of the biological activity of antibody-containing	
	immune sera against B. burgdorferi: A promissing approach for the	
	development of a new class of diagnostic tests	77
B.3.1.	Comparison of two laboratory methods for the determination of	
	serum resistance in B. burgdorferi isolates	77
B.3.1.1.	Serum sensitivity among borrelial isolates to NHS	77
B.3.1.2.	Deposition of C6 and C9 on borrelial surfaces	80
B.3.2.	Borreliacidal activity of early LD sera against complement-resistant	
	B. afzelii FEM1 wild type and an OspC-lacking variant	81

IV Contents

		Page
B.3.2.1.	Borreliacidal effect of early LD sera against isolate FEM1 as determined	
	by growth inhibition assay and detection of deposited complement	
	components (GIA)	82
B.3.2.2.	Immunoreactivity of borreliacidal Lyme disease sera with B. afzelii	
	outer membrane proteins	83
B.3.2.3.	Growth characteristics of FEM1 variants differing with regard to OspC	
	expression	85
B.3.2.4.	Characterisation of early Lyme disease sera with regard to their	
	borreliacidal activity against FEM1 variants	88
B.4.	In vitro susceptibility testing of B. burgdorferi against well-known	
	and newly-developed antimicrobial agents	91
B.4.1	Evaluation of a new colorimetric microdilution method for the	
	in vitro susceptibility testing of B. burgdorferi against	
	antimicrobial substances	91
B.4.1.1.	Test sensitivity	91
B.4.1.2.	Test reproducibility and quality control	93
B.4.2.	Characterisation of the <i>in vitro</i> susceptibility profile of <i>B. burgdorferi</i>	
	against antimicrobial substances under standardised test conditions	94
B.4.2.1.	Penicillins	94
B.4.2.2.	Oral and parenteral cephalosporins	97
B.4.2.3.	Carbapenems, monobactams, glycopeptides, and fusidic acid	101
B.4.2.4.	Tetracyclines	104
B.4.2.5.	Aminoglycosides	106
B.4.2.6.	Streptogramins, macrolides, azalides, and ketolides	108
B.4.2.7.	Quinolones	111
B.5.	Analysis of <i>in vitro</i> interactions between <i>B. burgdorferi</i> and newly-	
	developed antimicrobial agents	116
B.5.1.	Results of time-kill experiments	116

Contents V

		Pag
B.5.1.1.	Time-kill studies performed on B. burgdorferi exposed to erythromycin,	
	telithromycin, and cethromycin	116
B.5.1.2.	Time-kill studies performed on B. burgdorferi exposed to ciprofloxacin	
	and gemifloxacin	118
B.5.2.	Electron microscope analysis of <i>B. burgdorferi</i> exposed to increasing	
	concentrations of newly-developed antimicrobial agents	120
B.5.2.1.	Electron microscope analysis of <i>B. burgdorferi</i> exposed to cethromycin	120
B.5.2.2.	Electron microscope analysis of <i>B. burgdorferi</i> exposed to ciprofloxacin	
	and gemifloxacin	122
B.5.3.	Differential protein expression of <i>B. burgdorferi</i> exposed to increasing	
	concentrations of penicillin G and doxycycline	124
B.5.3.1.	MIC determination	125
B.5.3.2.	Identification of proteins with variable expression after exposure of	
	Borreliae to increasing concentrations of penicillin G and doxycycline	125
B.6.	In vitro susceptibility testing of E. phagocytophila against well-known	
	and newly developed antimicrobial agents	129
B.6.1.	Evaluation of a new semiquantitative PCR-based microdilution method f	or
	in vitro susceptibility testing of E. phagocytophila against antimicrobial	
	substances	129
B.6.1.1.	Precision and reproducibility of semiquantitative measurement of	
	ehrlichial growth by LightCycler 16S-rDNA PCR	129
B.6.1.2.	Test sensitivity	131
B.6.1.3.	Test reproducibility and quality control	133
B.6.2.	Characterisation of the <i>in vitro</i> susceptibility profile of <i>E. phagocytophila</i>	a
	against antimicrobial substances as determined by a LightCycler PCR-	
	based microdilution test method under standardised conditions	135

VI	Contents
----	----------

		Page
C.	Discussion	
C.1.	Serodiagnosis of LD: Diagnostic problems related to the current lack of	
	test standardisation	137
C.1.1.	External quality control of LD serology: The systematic approach of	
	the German proficiency testing program	137
C.1.2.	Quality of LD serology in the routine microbiological laboratory:	
	Lessons learned from the German proficiency testing program established	d
	in 1999	138
C.1.3.	Necessity of diagnostic standardisation: Future perspectives in promoting	g
	better test quality	140
C.2.	Recombinant test systems: A novel approach for a more accurate	
	serological diagnosis of LD	141
C.3.	Tick- borne pathogens other than <i>B. burgdorferi</i> (TOBB):	
	Continuing problems of epidemiology and microbiological diagnosis	144
C.3.1.	Contributions to the seroepidemiology and medical significance of	
	E. phagocytophila in midwestern Germany	145
C.3.2.	Contributions to seroepidemiology and medical significance of	
	Babesia spp. in midwestern Germany	148
C.4.	Sensitivity testing of <i>B. burgdorferi</i> to human serum by growth	
C. 1 .	inhibitory assays: A new diagnostic approach to diagnosing active LD	151
C.4.1.	Evaluation of test procedures for the determination of serum resistance	151
C.4.2.	Evaluation of a GIA and and IFA for the determination of	
	complement resistance of B. burgdorferi isolates	152
C.4.3.	Evaluation of laboratory tests for a better characterisation of the	
	bactericidal immune response of human immune sera directed against	
	B. burgdorferi isolates	154

Contents VII

		Page
C.5.	Standardised in vitro susceptibility testing of Borrelia burgdorferi again	st
	well-known and newly-developed antimicrobial agents -	
	Possible implications for new therapeutic approaches in LD	158
C.5.1.	In vitro susceptibility determination of the B. burgdorferi complex	
	against antimicrobial agents: Problems and drawbacks of current test	
	methods	159
C.5.2.	Interactions between antimicobial agents and the test medium	161
C.5.3.	Colorimetric microdilution in vitro susceptibility testing:	
	A novel approach to MIC determination of antimicrobial agents against	
	B. burgdorferi	162
C.5.4.	Characterisation of borreliacidal activity of antimicrobial agents in vitro	
	using time-kill experiments	163
C.5.5.	Determination of MBCs: A more restrictive tool for characterising	
	borreliacidal activity	164
C.5.6.	In vitro testing of B. burgdorferi against well known and recently	
	introduced antimicrobial agents applying a standardised methodology	165
C.5.7.	Possible heterogeneity of different genospecies of the B. burgdorferi	
	complex with regard to their in vitro susceptibility pattern	168
C.5.8.	Current problems of treatment in LD: Treatment failure, re-infection,	
	missdiagnosis, and co-infection	169
C.6.	Changes in the protein expression pattern of borreliae exposed to	
	antimicrobial agents: Evidence for possible escape mechanisms on the	
	part of the pathogen?	171
C.7.	Recently-introduced antimicrobial agents: Possible implications for	
	alternative therapeutic approaches in LD and other tick-borne diseases?	174
C.7.1.	In vitro effectiveness of new fluoroquinolones against B. burgdorferi	174
C.7.2.	In vitro effectiveness of new ketolides against B. burgdorferi	177
C.7.3.	In vitro susceptibility testing of E. phagocytophila against well-known	
	and recently-introduced antimicrobial agents by use of a new semiquanti	i-
	tative PCR- based testing method developed for fastidious organisms	181

VIII Contents

		Page
C.7.4.	New therapeutic strategies in the treatment of tick-borne diseases:	
	Need for in vivo studies	184
D.	Materials and Methods	187
D.1.	Materials and microorganisms	187
D.1.1.	Bacterial strains	187
D.1.1.1.	B. burgdorferi isolates	187
D.1.1.2.	E. phagocytophila isolates	187
D.1.1.3.	Babesia spp. isolates	187
D.1.1.4.	Reference strains	188
D.1.2.	Culture media	188
D.1.2.1.	Modified Barbour-Stoenner-Kelly (BSK)-medium for culturing	
	B. burgdorferi	188
D.1.2.2.	Cell-line and culture media used for the propagation of E. phagocytophi	la189
D.1.2.3.	HL-60 cell line	189
D.1.2.4.	Cell culture medium for the propagation of HL60 cells	189
D.1.2.5.	Cell culture medium for the propagation of HL60 cells infected with	
	E. phagocytophila.	189
D.1.3.	Oligonucleotides and antibodies	190
D.1.3.1.	Oligonucleotides	190
D.1.3.2.	Antibodies	192
D.1.4.	Serum sources and patient samples used for the evaluation of	
	serological diagnostic assay systems	192
D.1.4.1.	Serum samples used for the evaluation of a recombinant ELISA (RE)	192
D.1.4.2.	Sera used throughout the German LD proficiency testing program 1999	
	- 2001	193
D.1.4.3.	Serum samples used for seroepidemiological investigations of anti-	
	E. phagocytophila antibody prevalence in western Germany	193

Contents IX

		Page
D.1.4.4.	Serum samples used for seroepidemiological investigations of anti-	
	Babesia spp. antibody prevalence in midwestern Germany	194
D.1.4.5.	Other sera used for immunological experiments	195
D.1.4.5.1.	Immune sera from LD patients	195
D.1.4.5.2.	Sources of Non-immune Human Serum (NHS)	195
D.2.	Methods	195
D.2.1.	Culture methods	195
D.2.1.1.	Culture and propagation of borrelial isolates	195
D.2.1.2.	Culture and propagation of HL60 cell line and ehrlichial isolates	196
D.2.1.2.1.	Culture and propagation stock cultures of HL60 cells	196
D.2.1.2.2.	Propagation of E. phagocytophila isolates	196
D.2.2.	Molecular microbiological methods	197
D.2.2.1.	Polymerase chain reaction (PCR) methods	197
D.2.2.1.1.	PCR for the detection of borrelial gens	197
D.2.2.1.2.	RFLP-analysis of 5S-23S "intergenic spacer"-region of B. burgdorferi	197
D.2.2.1.3.	Reverse transcription polymerase chain reaction (RT-PCR) for the	
	detection of flagellin, OspA, and OspC mRNA	197
D.2.2.1.4.	16S-rRNA-gene PCR for the universal detection and characterisation	
	of bacterial pathogens	198
D.2.2.1.5.	PCR for the detection of epank gene fragments of E. phagocytophila	198
D.2.2.1.6.	PCR for the detection of a species-specific region of the 18S-rRNA	
	gene of B. microti	199
D.2.2.1.7.	PCR for the detection of a genus-specific region of the 18S-	
	rRNA gene of Babesia spp.	199
D.2.2.2.	Sequencing of PCR-Products	200
D.2.2.3.	Restriction analysis using DNA restriction endonucleases	200
D.2.3.	Organisation and structure of the German LD proficiency testing	
	Program	200

X Contents

		Page
D.2.3.1.	Preparation and shipment of serum samples	201
D.2.3.2.	Assessment of correct test results by reference laboratories	201
D.2.3.3.	Study conditions and statistical analysis	202
D.2.4.	Serological assays and test procedures	203
D.2.4.1.	Development and evaluation of an ELISA (RE) using recombinant	
	proteins for the serological diagnosis of LD	203
D.2.4.1.1.	Preparation of the assay system	203
D.2.4.1.2.	Test procedure	203
D.2.4.1.3.	Prospective evaluation of the RE in comparison to a conventional whole	e-
	cell lysate ELISA	204
D.2.4.2.	Other commercial ELISA-tests used for serological testing for LD.	204
D.2.4.3.	Recombinant immunoblot for serodiagnosis of LD	204
D.2.4.4.	Whole-cell lysate B. burgdorferi immunoblot for the serodiagnosis of L	D205
D.2.4.5.	IFA for serological diagnosis of anti-E. phagocytophila IgG- and	
	IgM-antibodies	205
D.2.4.6.	IFAs for serological diagnosis of B. microti and B. divergens infection	205
D.2.4.6.1.	IFA for serological diagnosis of B. microti infection	205
D.2.4.6.2.	IFA for serological diagnosis of B. divergens infection	205
D.2.4.6.3.	Serological testing for anti-Babesia spp. IgM- and IgG- antibodies	206
D.2.5.	Serobiological and protein analytical assays	206
D.2.5.1.	In vitro borrelial growth inhibition assay (GIA)	206
D.2.5.2.	Determination of total complement activity (CH ₅₀)	207
D.2.5.3.	Determination of protein concentrations	207
D.2.6.	Immune biological detection of borrelial antigens and complement	
	components	207
D.2.6.1.	Detection of deposited C6 and C9 (TCC)	207
D.2.6.2.	Detection of deposited complement components on the surfaces of	
	borreliae by IFA	208

Contents XI

		Page
D.2.7.	Gel electrophoretic methods and immunobloting of proteins	208
D.2.7.1.	Gel electrophoresis of borrelial proteins	208
D.2.7.2.	Immunoblotting of proteins	208
D.2.7.3.	Immunoblot analysis of immune sera	209
D.2.8.	Isolation of borrelial outer membrane fractions	209
D.2.9.	In vitro antimicrobial susceptibility testing of B. burgdorferi and	
	E. phagocytophila against antimicrobial agents	210
D.2.9.1.	Antimicrobial drugs and microdilution trays	210
D.2.9.2.	Broth microdilution susceptibility testing of B. burgdorferi	210
D.2.9.2.1.	Quality control experiments	210
D.2.9.2.2.	Determination of test sensitivity	210
D.2.9.2.3.	Determination of minimal inhibitory concentration (MIC)	211
D.2.9.2.4.	Determination of minimal borreliacidal concentration (MBC)	211
D.2.9.2.5.	Time-kill studies	211
D.2.9.3.	In vitro susceptibility testing of E. phagocytophila	212
D.2.9.3.1.	Broth microdilution susceptibility testing	212
D.2.9.3.2.	Detection of ehrlichial growth by semiquantitative PCR	212
D.2.9.3.3.	Statistical methods for the determination of bacterial growth as	
	measured by semiquantitative PCR	215
D.2.9.3.4.	Preparation of an internal quantitative DNA standard for	
	E. phagocytophila	217
D.2.9.3.5.	Determination of growth kinetics for both tested isolates of	
	E. phagocytophila	217
D.2.9.3.6.	Determination of MIC	217
D.2.9.3.7.	Quality control experiments	217
D.2.10.	Electron microscope analysis of <i>B. burgdorferi</i> isolates exposed	
	to antimicrobial agents	218

XII Contents

		Page
D.2.11.	Analysis of antibiotic-exposed borreliae by two dimensional	
	protein electrophoresis (2-DE) and matrix-assisted laser desorption/	
	ionisation time-of-flight mass spectrometry (MALDI-TOF-MS)	218
D.2.11.1.	Broth micro- and macrodilution susceptibility testing of borrelial cells	218
D.2.11.2.	Preparation of protein samples	219
D.2.11.3.	Two dimensional electrophoresis (2-DE) and staining conditions	219
D.2.11.4.	Scanning and spot detection	219
D.2.11.5.	Identification of proteins by MALDI-TOF-MS	220
D.2.12.	Statistics	220
Е.	Summary and conclusion	221
F.	References	225
G.	List of abbreviations	255