Institut für Bodenökologie GSF – Forschungszentrum für Umwelt und Gesundheit

Einfluss verschiedener Bewirtschaftungssysteme auf die Diversität von Bodenpilzen

Alexandra Elisabeth Hagn

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. I. Kögel-Knabner

Prüfer der Dissertation: 1. Univ.-Prof. Dr. J. C. Munch

2. Univ.-Prof. Dr. B. Hock

Die Dissertation wurde am 21.05.2003 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 20.10.2003 angenommen.

Erfassung, Prognose und Bewertung nutzungsbedingter Veränderungen in Agrarökosystemen und deren Umwelt

Alexandra Hagn

Einfluss verschiedener Bewirtschaftungssysteme auf die Diversität von Bodenpilzen

FAM - Bericht 63

Shaker Verlag Aachen 2004

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: München, Techn. Univ., Diss., 2003

Copyright Shaker Verlag 2004 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-2473-4 ISSN 0941-892X

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/95 96 - 0 • Telefax: 02407/95 96 - 9 Internet: www.shaker.de • eMail:info@shaker.de

Meinen Eltern

PUBLIKATIONSLISTE

- 1) Hagn, A., Geue, H., Pritsch, K., Schloter, M. (2003): Assessment of fungal diversity and community structure in agricultural used soils. In Recent Research Developments in Microbiology 6 (2002), Part II. Research Signpost, Kerala, Indien.
- 2) Hagn, A., Pritsch, K., Ludwig, W., Schloter, M. (2003): Theoretical and practical approaches to evaluate suitable primer sets for soil fungal community analysis. Acta Biotechnologica 23 (4) Accepted und In Press.
- 3) Hagn, A., Pritsch, K., Schloter, M., Munch, J.C. (2003): Fungal diversity in agricultural soil under different farming management systems with special reference to biocontrol strains of *Trichoderma* spp. Biology and Fertility of Soils, 38, 236-244.

TABELLENVERZEICHNIS

- Tab. 1: Bodeneigenschaften des Schlages A17
- Tab. 2: Bewirtschaftungsmaßnahmen des Schlages A17 im Jahr 2000
- Tab. 3: Pilzspezifische Primersets getestet in virtuellen und realen PCR-Ansätzen
- Tab. 4: Isolatezahlen und Anzahl der morphologischen Gruppen für alle Medien
- Tab. 5: Isolierte Hauptgattungen der einzelnen Medien
- Tab. 6: Zunahmen und Abnahmen der Shannon-Weaver Indices für alle Medien, Standorte und Probennahmen
- Tab. 7: Zunahmen und Abnahmen der Abundanzwerte für alle Medien, Standorte und Probenahmen
- Tab. 8: Einteilung der Isolate (Malzextrakmedium) aller Probennahmen und Standorte in morphologische Gruppen
- Tab. 9: Einteilung der Isolate (Bodenextrakmedium) aller Probennahmen und Standorte in morpholgische Gruppen
- Tab. 10: Einteilung der Isolate (Moser-b Medium) aller Probennahmen und Standorte in morpholgische Gruppen

ABBILDUNGSVERZEICHNIS

- Abb.1: Gelcompar Vergleich der DGGE-Fingerprints amplifizierter 18S rDNA aus Boden-DNA-Extrakten der Aprilprobennahme
- Abb. 2: Gelcompar Vergleich der DGGE-Fingerprints amplifizierter 18S rDNA aus Boden-DNA-Extrakten der Juniprobennahme
- Abb. 3: Gelcompar Vergleich der DGGE-Fingerprints amplifizierter 18S rDNA aus Boden-DNA-Extrakten der Septemberprobennahme
- Abb.4: Gelcompar Vergleich der DGGE-Fingerprints amplifizierter 18S rDNA aus vereinigten Boden-DNA-Extrakten für alle Probennahmen
- Abb. 5: Vergleich der DGGE-Bandenmuster verschiedener Isolate
- Abb. 6: Vergleich der DGGE-Bandenmuster zweier Isolate der *Trichoderma*-Gruppe mit den Bandenmustern amplifizierter 18S rDNA aus vereinigten Boden-DNA-Extrakten
- Abb. 7: Definition morphologischer Gruppen
- Abb. 8: Shannon-Weaver Indices im Vergleich aller Medien, Standorte und Probennahmen
- Abb. 9: Abundanzwerte im Vergleich aller Medien, Standorte und Probennahmen
- Abb. 10: Hauptkomponentendiagramme der transformierten Daten der morphologischen Gruppen für alle Medien, Standorte und Probennahmen
- Abb. 11: Ergebnisse der Konfrontationstests von Isolaten der *Trichoderma*-Gruppe mit *Fusarium graminearum*
- Abb. 12: Neighbor-Joining Baum berechnet aus ITS-Sequenzen von Isolaten der *Trichoderma*-Gruppe und Referenzsequenzen der NCBI Datenbank incl. Markierung der Laccase bildenden Isolate der Tests mit *Fusarium graminearum*

- Abb. 13: Ergebnisse der Konfrontationstests von Isolaten der Trichoderma-Gruppe mit $Fusarium\ oxysporum$
- Abb. 14: Neighbor-Joining Baum berechnet aus ITS-Sequenzen von Isolaten der Trichoderma-Gruppe und Referenzsequenzen der NCBI Datenbank incl. Markierung der Laccase bildenden Isolate der Tests mit Fusarium oxysporum
- Abb. 15: Verteilung der bei Konfrontation mit *Fusarium oxysporum* Laccase bildenden Isolaten der *Trichoderma*-Gruppe für alle Standorte und Probennahmen

ABKÜRZUNGSVERZEICHNIS

A17 Acker/Schlag 17

ABTS 2,2'-Azino-bis-3-ethylbenzthiazolin-6 sulfonsäure

bea Bodenextraktmedium

bp basepairs (Nukleotidpaare)
BSA Bovine Serum Albumin

dest. destilliert

C_{org} organischer Kohlenstoff

DGGE denaturierende Gradienten-Gelelektrophorese

DMSO Dimethylsulfoxid

DNA desoxyribonucleic acid (Desoxyribonukleinsäure)

DNase Desoxynuklease dNTPs Desoxynukleotide

FAM Forschungsverbund Agrarökosysteme München

HC high yield, conventional farming (Hochertrag,

flächeneinheitliche Düngung)

HP high yield, precision farming (Hochertrag, teilschlagspezifische

Düngung)

ITS internal transcribed spacers

LC low yield, conventional farming (Niederertrag,

flächeneinheitliche Düngung)

LP low yield, precision farming (Niederertragsberich,

teilschlagspezifische Düngung)

Mea Malzextraktmedium
Mb Moser-b Medium

PCR Polymerase Chain Reaction (Polymerasekettenreaktion)

RAPD random amplification of polymorphic DNA

rDNA ribosomale Desoxyribonukleinsäure

SSCP Single-Strand-Conformation-Polymorphism

Tag Thermus aquaticus

TGGE Temperaturgradienten-Gelelektrophorese

INHALTSVERZEICHNIS

A. Einleitung	1
A.1 Pilze in landwirtschaftlich genutzten Böden	1
A.2. Methoden zur Erfassung struktureller Diversität von Bodenpilzpopulationen	3
A.3. Ziel der Arbeit	7
B. Material und Methoden	9
B.1 Standort und Probennahme	9
B.2 Untersuchungen an Pilzpopulationen in Ackerböden	11
B.2.1 Selektion pilzspezifischer 18S rDNA Primersets	11
B.2.1.1 Software gestützte PCR	11
B.2.1.2 Reale PCR	11
B.2.2 DNA-Isolierung aus Bodenmaterial	12
B.2.3 Spezifische Amplifizierung pilzlicher 18S rDNA aus	
Boden-DNA-Extrakten	12
B.2.4 Analyse von Pilzgemeinschaften mittels denaturierender	
Gradienten-Gelelektrophorese (DGGE)	13
B.2.5 Nährmedien zur Kultivierung von filamentösen Bodenpilzen	13
B.2.6 Isolierung aktiver Hyphen aus Bodenproben	15
B.2.7 Charakterisierung morphologischer Gruppen	16
B.2.8 DNA-Isolierung aus Pilzkulturen	16
B.2.9 Amplifizierung der 18S rDNA	17
B.2.10 Amplifizierung der ITS Region	17
B.2.11 Sequenzanalyse und molekulare Identifizierung von Pilzisolaten	18
B.2.12 RAPD-Analyse zur intraspezifischen Differenzierung von Isolaten	
der Gattung Trichoderma	18
B.3 Populationsanalysen anhand der Berechnung ökologischer Indices	19
B.3.1 Shannon-Weaver Index	19
B.3.2 Abundanz und Gleichverteilung	19
B.3.3 Hauptkomponentenanalyse	20
B.4 Isolate der "Trichoderma-Gruppe" mit potentieller Eignung zur Biokontrolle	20
B.4.1 Screening von Trichoderma-Stämmen und Pathogene auf	
Laccase-Bildung in Reinkultur	20

B.4.2 Konfrontationsversuche von Trichoderma-Isolaten mit Fusarium	
graminearum und Fusarium oxysporum	21
C. Ergebnisse	22
C.1 Kultivierungsunabhängige Analyse pilzlicher Gesamtdiversität basierend auf	
DNA-Polymorphismen	22
C.1.1 Virtuelle und reale Primertests	22
C.1.2 Spezifische Amplifizierung pilzlicher 18S rDNA Sequenzen aus	
Boden-DNA-Extrakten	22
C.2 Kultivierungsabhängige polyphasische Charakterisierung aktiver	
Pilzgemeinschaften in Ackerböden	26
C.2.1 Definition morphologischer Gruppen	26
C.2.2 Genotypische Charakterisierung von Bodenpilzgemeinschaften	28
C.2.3 Kultivierbare Vertreter von Pilzpopulationen in Abhängigkeit von	
unterschiedlichen Bewirtschaftungsformen, Standorteigenschaften und	
Jahreszeit	29
C.2.3.1 Pilzliche Diversität	29
C.2.3.2 Abundanzen morphologischer Gruppen	31
C.2.3.3 Hauptkomponentenanalyse	32
C.3 Populationsstruktur der morphologischen Gruppe "Trichoderma"	34
C.3.1 Molekularbiologische Untersuchungen der Gattung Trichoderma	34
C.3.2 Jahreszeitliche, standort- und bewirtschaftungsbedingte Verteilung	
von T. viride, T. atroviride und Trichoderma sp. "neu"	34
C.3.3 Untersuchungen zur intraspezifischen Variabilität von T. viride,	
T. atroviride und Trichoderma sp. "neu"	35
C.4 Endogene Trichoderma-Stämme als potentielle Antagonisten gegen	
bodenbürtige (Weizen)Pathogene	36
C.4.1 Konfrontationsversuche von Trichoderma spp. gegen Fusarium	
graminearum	36
C.4.2 Konfrontationsversuche von Trichoderma spp. gegen Fusarium	
oxysporum	39

D. Diskussion	43
D.1 Kultivierungsabhängige und kultivierungsunabhängige Methoden zur	
Erfassung pilzlicher Diversität im Boden	43
D.1.1 Eignung von 18S rDNA Fingerprinting zur Erfassung pilzlicher	
Gesamtgemeinschaften	43
D.1.2 Isolierung aktiver Populationen	44
D.1.3 Komplementäre Techniken	46
D.2 Der Einfluss ökologischer Faktoren auf Gesamtpilzgemeinschaften und	
aktive Populationen	47
D.2.1 Jahreszeitlich und vegetationsbedingte Effekte	47
D.2.2 Standortspezifische Unterschiede	48
D.2.3 Einfluss verschiedener Bewirtschaftungssysteme	49
D.3 Die Gattung Trichoderma als eine Hauptgruppe pilzlicher	
Gemeinschaften der beprobten Standorte	51
D.3.1 Phylogenetische Einteilung der Gattung Trichoderma	51
D.3.2 Jahreszeitliche, standort- und bewirtschaftungsspezifische Verteilung	
von T. viride, T. atroviride und Trichoderma sp. "neu"	52
D.3.3 Trichoderma spp. als potentiell biokontrollaktive Organismen	
gegen Fusariosen	53
D.3.4 Laccasebildung – Detoxifikationsmechanismus und Abwehrstrategie?	53
D.4 Schlussfolgerung	55
E. Zusammenfassung	57
F. Literaturverzeichnis	59
G. Anhang	75
G.1 Tabelle 8: Einteilung der Isolate (Malzextraktmedium) aller Probennahmen	
und Standorte in morphologische GruppenCharakterisierung morphologischer	
Gruppen für die Isolate	75

G.2 Tabelle 9: Einteilung der Isolate (Bodenextraktmedium) aller Probennahmen	
und Standorte in morphologische Gruppen	79
G.3 Tabelle 10: Einteilung der Isolate (Moser-b Medium) aller Probennahmen	
und Standorte in morphologische Gruppen Charakterisierung morphologischer	
Gruppen für die Isolate	85
G.4 Publikation: Assessment of fungal diversity and community structure in	
agricultural used soils	89
G.5 Publikation: Theoretical and practical approaches to evaluate suitable primer se	ts
for soil fungal community analysis	109
G.6 Publikation: Fungal diversity in agricultural soil under different farming	
management systems with special reference to biocontrol strains of	
Trichoderma spp.	119