Unterstützung manueller Montage durch Augmented Reality-Technologien

Von der Fakultät für Maschinenwesen
der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des
akademischen Grades eines Doktors der Ingenieurwissenschaften
genehmigte Dissertation

vorgelegt von

Stefan Johannes Wiedenmaier

aus

Karlsruhe

 $Berichter: \quad Univ.-Prof.\ Dr.-Ing.\ Dipl.-Wirt.-Ing.\ H.\ Luczak$

Univ -Prof. Dr -Ing. U. Dilthey

Tag der mündlichen Prüfung: 21. Oktober 2003

D 82 (Diss. RWTH Aachen)

Schriftenreihe Rationalisierung und Humanisierung

Band 58

Stefan Johannes Wiedenmaier

Unterstützung manueller Montage durch Augmented Reality-Technologien

D 82 (Diss. RWTH Aachen)

Shaker Verlag Aachen 2004

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Aachen, Techn. Hochsch., Diss., 2003

Das BMBF unterstützte die durchgeführten Untersuchungen im Leitprojekt ARVIKA unter der Fördernummer 01IL903R4. Die Ford Werke AG stellte Montageobjekte und -dokumente zur Verfügung.

Copyright Shaker Verlag 2004

Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-2429-7 ISSN 1434-8519

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/95 96 - 0 • Telefax: 02407/95 96 - 9 Internet: www.shaker.de • eMail: info@shaker.de

Vorwort

Viele komplexe Tätigkeiten in Produktion und Service erfordern ein hohes Maß an unterstützenden Informationen zur richtigen Zeit und am richtigen Ort. Gerade in oben genannten Bereichen ist auch die manuelle Montage angesiedelt, die freie Hände zum Arbeiten erfordert. Augmented Reality (AR) Systeme, die benötigte Informationen automatisch direkt im Sichtfeld des Benutzers einblenden, sind hierfür ein innovativer Ansatz. Diese Monographie nimmt sich der "Unterstützung manueller Montage durch Augmented Reality-Technologien" in zwei inhaltlichen Schwerpunkten an.

Zum einen werden Montagebereiche und Aufgaben eingegrenzt, die sich durch AR unterstützen lassen. Eine - anhand von Komplexitäts- und Häufigkeitskriterien sowie den drei Regulationsebenen des Rasmussen-Modells menschlicher Leistung - hergeleitete Bewertungsmatrix für Montageaufgaben ermöglicht es, vorliegende Montageaufgaben den Regulationsebenen zuzuordnen. Anschließend wird deren AR-Potential experimentell in einer Querschnittsstudie an einer Anwendung aus der Automobilindustrie untersucht. Diese Evaluation von unterschiedlichen Montageaufgaben basiert auf einem Vergleich der Montagezeit, der Montagefehler und der subjektiven Beanspruchung der Montierenden mit zwei weiteren Unterstützungsmedien für die manuelle Montage.

Zum anderen geht ein weiterer inhaltlicher Schwerpunkt näher auf einzelne Gestaltungskriterien von AR-Systemen in der Montage ein und überprüft diese im Experiment. Daraus ergeben sich wissenschaftlich abgesicherte Gestaltungsrichtlinien, die das Arbeitsmittel AR weiter verbessern.

Die durch diese Dissertation gewonnenen Erkenntnisse bezüglich der potentiellen Einsatzmöglichkeiten in der Montage und die hier beschriebenen Gestaltungsrichtlinien verdeutlichen den Nutzen einer benutzerzentrierten Gestaltung im Entwicklungsprozess einer neuen Technologie. Diese Dissertationsschrift verschreibt sich somit - ganz im Sinne der Schriftenreihe - der "Humanisierung und Rationalisierung".

Holger Luczak

Mein Dank gilt allen, die mir die nötige Freiheit und Unterstützung gewährt haben, die mir zur Seite standen, die mich ermutigt und bestärkt haben.

1.	Eir	ıleitung	1
	1.1.	Fragestellung	. 1
	1.2.	Arbeitswissenschaftliche Betrachtungsperspektive	2
	1.3.	Gliederung	3
2.	Gr	undlagen	5
	2.1.	Augmented Reality (AR)	5
	2.1	1. Technologische Ansätze und Untersuchungen für AR	6
	2.1	2. Ergonomische Ansätze und Untersuchungen für AR	8
	2.1	3. AR und deren Anwendungsgebiete	9
	2.2.	Manuelle Montage	13
	2.2	1. Definition manueller Montage	13
	2.2	2. Montagegerechte Konstruktion	15
	2.2	.3. Organisatorische Gestaltung der Montage	16
	2.2	4. Ergonomische Aspekte manueller Montage	17
	2.3.	Modellansätze	19
	2.3	1. Modelle informatorischer Benutzerleistungen	19
	2.3	.2. Modelle menschlicher Informationsverarbeitung	20
	2.3	3. Rasmussen: Modell menschlicher Leistung	21
	2.4.	Benutzerzentrierte Systemgestaltung im industriellen Umfeld	24
	2.4	1. Anforderungsanalyse und Dokumentation	25
	2.4	2. Umsetzung und Vorgehen bei der Evaluation	26
	2.4	.3. Evaluationsmethoden	27
3.	Kr	iterien zum Einsatz von AR in der manuellen Montage	31
	3.1.	Kriterien für Montageaufgaben	31
		1. Komplexität der Montage	
	3.1	.2. Häufigkeit der Montage	33
	3.2.	Kriterienmatrix zur Bewertung von Montageaufgaben	35
	3.3.	Rahmenbedingungen zur Auswahl von Montagetätigkeiten	38
	3.3	1. Technische Rahmenbedingungen	39
	3.3	.2. Organisatorische Rahmenbedingungen	40
	3.3	.3. Personelle Rahmenbedingungen	41
4.	Ge	staltung und Evaluation einer AR-Unterstützung an konkreten Montageaufgaben	43
	4.1.	Kriteriengestützte Auswahl der Montageaufgaben	43
	4.1	1 Vorauswahl der Montageaufgaben	43

4.1.2.	Überprüfung der Rahmenbedingungen	47
4.1.3.	Beurteilung der Montageaufgaben nach der Kriterienmatrix	49
4.2. Ges	taltung eines AR-Systems	52
4.2.1.	Auswahl geeigneter Hard- und Softwaretechnologien	53
4.2.2.	Technische Gestaltung des Versuchsaufbaus	. 59
4.2.3.	Ergonomische Gestaltung für die Darstellung im Display	62
4.3. Vor	gehen bei der Evaluation	65
4.3.1.	Vergleichsmedien	65
4.3.2.	Operationalisierung der Untersuchungskriterien	66
4.3.3.	Versuchsmethodik sowie Datenaufnahme und -auswertung	67
4.3.4.	Versuchsablauf	69
4.4. Erge	ebnisse und Diskussion der Montagezeiten	71
4.4.1.	Gruppenweiser Vergleich über alle Montageschritte	71
4.4.2.	Gruppenweiser Vergleich für ausgewählte Aufgaben	72
4.4.3.	Zusammenfassung der Montagezeituntersuchung	78
4.5. Erge	ebnisse und Diskussion der Montagefehler	79
4.5.1.	Gruppenweiser Vergleich der Montagefehler über alle Aufgaben	80
4.5.2.	Vergleich der Montagefehler über ausgewählte Aufgaben	81
4.5.3.	Zusammenfassung der Untersuchung zu den Montagefehlern	82
4.6. Erge	ebnisse und Diskussion der subjektiven Beanspruchung	83
4.6.1.	Vergleich der NASA-Task-Load-Index-Werte	84
4.6.2.	Zusammenfassung der Untersuchung zur subjektiven Beanspruchung	85
4.7. Zus	ammenfassung der Evaluationsergebnisse	85
5. Unters	uchung von Verbesserungsmöglichkeiten AR-unterstützter Montage	89
5.1. Exp	loration von Verbesserungsmöglichkeiten	89
5.1.1.	Vorgehensweise	89
5.1.2.	Ergebnisse der Exploration und Hypothesengewinnung	91
5.2. Ver	suchsvorbereitung	96
5.2.1.	Versuchsplanung	96
5.2.2.	Montagetechnischer Versuchsaufbau	.101
5.2.3.	AR-Hard- und Softwareauswahl	.105
5.2.4.	Versuchsumgebung und -ablauf	.108
5.3. Ver	suchsergebnisse	.109
5.3.1	Darstellungsformen	.109

iii Inhaltsverzeichnis

	5.3.2. Hinweispfeile	
	5.3.3. Anzahl der dargestellten Graphiken	
	5.4. Zusammenfassung und weitere Gestaltungshinweise	
	5.4.1. Auswahl der Displaytechnologie	
	5.4.2. Auswahl der Darstellungsarten	
6	6	
7		
	Abbildungsverzeichnis	
	Tabellenverzeichnis	
8	. Anhang	147
	8.1. Leitfaden für den Versuchsleiter zu den Versuchen in Kapitel 4	147
	8.2. Fragebogen zum Türmontageversuch in Kapitel 4	152
	8.3. NASA-Task Load IndeX (TLX)	154
	8.3.1. Paarweiser Vergleich	154
	8.3.2. TLX (deutsch) Beurteilungsskala	155
	8.4. Papieranleitung zum Montageversuch in Kapitel 4	156
	8.5. Screenshots von der AR-Anleitung mit kopfbasiertem Display	179
	8.6. Gruppenzuordnung der Versuchspersonen (Versuche in Kapitel 5)	182
	8.7. Fragebogen zu Steckversuchen in Kapitel 5	183
	8.8. Versuchsprotokolle (Kapitel 5)	187
	8.8.1. Versuch (Graphiken)	187
	8.8.2. Versuch (Hinweispfeile)	188
	8.8.3. Versuch (Reihen)	189
	8.9. MTM-Zeiten zu den Steckversuchen	190
	8.10. Hard- und Softwaredaten zu Kapitel 5	191
	8.10.1. Rechner	191
	8.10.2. Videodurchsicht-HMD	191
	8.10.3. Look-around Display	191
	8.10.4. Kamera	191
	8.11. Screenshots zu Versuchen in Kapitel 5	192
	8.11.1 Versuch 1: Graphiken	192
	8.11.2 Versuch 2: Hinweispfeile	192
	8.11.3 Versuch 3: Gemeinsame Anzeige mehrerer Montageorte	