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Abstract

Due to their excellent price-performance ratio, clusters built from commodity nodes have
become broadly adopted and increasingly popular as platforms for parallel processing.
Among them, the clusters of standard PCs interconnected with high-speed system area
networks (SANs) are especially attractive and have been widely established. At the same
time, the developments in interconnection technologies also formed the basis for the rise
of Non-Uniform Memory Access (NUMA) architectures, i.e. systems with physically dis-
tributed memories, but with a global address space allowing an efficient but non-uniform
access to any memory location in the system. These kinds of systems, especially when
offered as non cache coherent NUMA for loosely coupled commodity architectures, can
easily be implemented in a straightforward manner without major hardware efforts. They
form a favorable architectural tradeoff by combining the scalability and cost–effectiveness
of standard clusters with a shared memory support close to symmetric multiprocessors.

The non-uniform memory access characteristic, however, introduces a distinction be-
tween local and remote memory causing different memory access latencies. In systems
with such characteristics, a remote memory access can take up to an order of magnitude
longer than a local one. This leads to the fact that many shared memory applications ini-
tially do not achieve a good parallel speedup when running on NUMA-like architectures
due to excessive remote memory accesses.

This thesis targets such inefficiency problems of NUMA-based shared memory pro-
grams. For this purpose, a comprehensive and integrated tool environment has been built
which aims at improving the data locality of running applications, by combining single
frameworks enabling both program tuning and runtime manipulation. This environment
comprises a low-level data acquisition system, a distributed tool middleware, and a set of
performance tools. Based on the hardware monitoring facility, which is capable of observ-
ing all memory transactions performed on the interconnection fabric, the data acquisition
system provides information about an application’s memory access behavior as well as in-
formation about e.g. synchronization primitives and address mapping necessary for data
placement. This information is then aggregated across the distributed system and made
accessible to the tools through an established on-line monitoring interface specification
serving as middleware. Tools further process the acquired performance data and use it to
steer the execution of programs with a result of an optimization for the runtime data layout.

Currently, two such tools have been implemented: a Data Layout Visualizer (DLV) and
an Adaptive Runtime System (ARS). DLV is used to present the monitoring data in an easy-

i



to-use fashion allowing a programmer to understand the dynamic behavior of an application
and to detect and correct communication hot spots. ARS is used to transparently modify
the data layout during the execution of a program without involving the user. Both tools
are capable of introducing a better data locality and hence a better performance.

In addition, the tool environment includes an event-driven multiprocessor simulator
called SIMT. SIMT was originally designed to supply the monitoring information in case
no hardware monitor is available. It has been developed, however, to be fully flexible with
respect to the target architectures and can thereby be used as a general tool for system
design and performance evaluation of PC clusters with NUMA organization.

The monitoring and tool environment has been evaluated using a set of shared mem-
ory applications selected from standard benchmarks and kernels. Most of them show a
high improvement in terms of absolute execution time and speedup, proving the feasibility
and effectiveness of this monitoring approach. Furthermore, the monitoring approach pro-
vides the basic means to ensure interoperability between shared memory as well as existing
paradigm independent tools. This strongly contributes to the flexibility of the proposed ap-
proach and also enables the seamless integration into existing systems.
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