
Für meine Eltern, meine Geschwister und Tommy

Erstmalige Isolierung eines Isoprensynthase-Gens und heterologe Expression des aus der Pappel stammenden Gens sowie Charakterisierung der Eingangsgene des Mevalonatunabhängigen Isoprenoidbiosyntheseweges aus dem Cyanobakterium Synechococcus leopoliensis

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

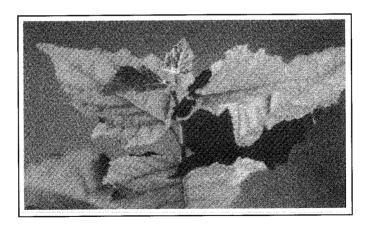
vorgelegt von

Barbara Miller aus Krumbach

Shaker Verlag GmbH, Aachen 2001

Berichterstatter:

PD Dr. Wolfgang Zimmer


Prof. Dr. Ulf-Ingo Flügge

Tag der mündlichen Prüfung: 13.06.01

Barbara Miller

Erstmalige Isolierung eines Isoprensynthase-Gens und heterologe Expression des aus der Pappel stammenden Gens sowie

Charakterisierung der Eingangsgene des Mevalonat-unabhängigen Isoprenoidbiosyntheseweges aus dem Cyanobakterium Synechococcus leopoliensis

Herausgeber: Prof. Dr. Wolfgang Seiler

Fraunhofer-Institut Atmosphärische Umweltforschung Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen

Garmisch-Partenkirchen, 2001

Berichterstatter:

PD Dr. Wolfgang Zimmer

Prof. Dr. Ulf-Ingo Flügge

Tag der mündlichen Prüfung: 13.06.01

Fraunhofer Institut

Institut Atmosphärische Umweltforschung

Schriftenreihe

Barbara Miller

Erstmalige Isolierung eines Isoprensynthase-Gens und heterologe Expression des aus der Pappel stammenden Gens sowie Charakterisierung der Eingangsgene des Mevalonat-unabhängigen Isoprenoidbiosyntheseweges aus dem Cyanobakterium *Synechococcus leopoliensis*

Herausgeber: Prof. Dr. Wolfgang Seiler

Fraunhofer-Institut Atmosphärische Umweltforschung Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen

Garmisch-Partenkirchen, 2001

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Miller, Barbara:

Erstmalige Isolierung eines Isoprensynthase-Gens und heterologe Expression des aus der Pappel stammenden Gens sowie Charakterisierung der Eingangsgene des Mevalonat-unabhängigen Isoprenoidbiosyntheseweges aus dem Cyanobakterium Synechococcus leopoliensis /

Barbara Miller. Aachen: Shaker, 2001

(Schriftenreihe des Fraunhofer-Instituts Atmosphärische Umweltforschung;

Bd. 2001,68)

Zugl.: Köln, Univ., Diss., 2001

ISBN 3-8265-9127-5

Copyright Shaker Verlag 2001 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8265-9127-5 ISSN 1436-1094

Shaker Verlag GmbH • Postfach 1290 • 52013 Aachen Telefon: 02407/95 96 - 0 • Telefax: 02407/95 96 - 9 Internet: www.shaker.de • eMail: info@shaker.de

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; daß sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Herrn PD Dr. Wolfgang Zimmer betreut worden.

Jasban Mb

Teile der Arbeit wurden veröffentlicht:

MILLER B., HEUSER T., ZIMMER W. (1999) A Synechococcus leopoliensis SAUG 1402-1 operon harboring the 1-deoxyxylulose 5-phosphate synthase gene and two additional open reading frames is functionally involved in the dimethylallyl diphosphate synthesis.

FEBS Lett. 460, 485-490

MILLER B., HEUSER T., ZIMMER W. (2000) Functional involvement of a deoxy-D-xylulose 5-phosphate reductoisomerase gene harboring locus of *Synechococcus leopoliensis* in isoprenoid biosynthesis.

FEBS Lett. 481, 221-226

MILLER B., OSCHINSKI C., ZIMMER W. (2001) First isolation of an isoprene synthase gene and successful expression of the gene from poplar in *E. coli*.

Planta, im Druck.

Die folgenden DNA-Sequenzen wurden in der EMBL-Datenbank deponiert:

Y18874: dxs, ORF2, ORF3, ORF4

AJ25021: dxr, ORF2, ORF3, ORF4, ORF5, ORF6

AJ294819: ispS

Ausnahmen sind nicht immer die Bestätigung einer alten Regel; sie können auch Vorboten einer neuen sein.

Marie Freifrau von Ebner-Eschenbach (1830-1916)

Gliederung

1. Einleitung	1
1.1 Die Bedeutung von Isopren für die Atmosphärenchemie	1
1.2 Biogene Quellen des Isoprens	1
1.3 Biosynthese der Isoprenoide	2
1.4 Wissenschaftliche und wirtschaftliche Bedeutung des MEP-Stoffwechsel	ıs6
1.5 Ziele dieser Arbeit	7
2. Material und Methoden	8
2.1 Herkunft und Anzucht verwendeter Organismen	8
2.1.1 Verwendete Cyanobakterienstämme und ihre Kultivierung	
2.1.2 Verwendete Pappelart	
2.1.3 Verwendete <i>Escherichia coli</i> -Stämme als Wirtsbakterien und ihre A	
2.1.4 Verwendete Vektoren für Klonierungen	
•	
2.2 Molekularbiologische Methoden	12
2.2.1 Nukleinsäureisolierung	12
2.2.1.1 Isolierung genomischer DNA aus Cyanobakterien	12
2.2.1.2 Isolierung genomischer DNA aus Pflanzen	13
2.2.1.3 RNA-Isolierung aus Populus alba x Populus tremula	14
2.2.1.4 Plasmidisolierung nach BIRNBOIM & DOLY	
2.2.1.5 Plasmidisolierung mittels Cäsium-Chlorid-Gradienten	
2.2.1.6 Plasmidisolierung mittels Säulenreinigung	
2.2.1.7 Präparation einzelsträngiger DNA für Sequenzierungen	
2.2.2 Agarose-Gelelektrophorese zur Auftrennung und Größenbestimmun	g von
DNA-Fragmenten	
2.2.3 Bestimmung der DNA-Reinheit und Menge	
2.2.4 Klonierung, Umklonierung, Ligation und Transformation	
2.2.4.1 Restriktion	
2.2.4.2 Dephosphorylierung des Vektors	
2.2.4.3 Phenol-Chloroform-Extraktion und Ethanol-Fällung	
2.2.4.4 Ligation	
2.2.4.5 Herstellung kompetenter Zellen	
2.2.4.6 Transformation	
2.2.4.7 Selektion positiver Klone	23

2.2.5 Erstellung von Genbanken	24
2.2.5.1 Erstellung einer Cosmid-Genbank von Synechococcus leopoliensis	24
2.2.5.2 Erstellung einer λ-Genbank von P. alba x P. tremula	26
2.2.5.2.1 Die Isolierung von mRNA	2 6
2.2.5.2.2 Die cDNA-Synthese	2e
2.2.5.2.3 Die Adapter-Ligation	27
2.2.5.2.4 Verpackung der cDNA in λ-Phagen	28
2.2.5.2.5 Vermehrung der λ-Phagen	28
2.2.5.2.6 Bestimmung des Phagentiters	28
2.2.5.2.7 Die in vivo Excision	29
2.2.6 Die Polymeraseketten-Reaktion (PCR) zur Amplifikation von DNA-	
Segmente	29
2.2.6.1 Auswahl der Oligonukleotide	29
2.2.6.2 Reaktionsansätze für die Polymeraseketten-Reaktion	31
2.2.7 Markierung von Nukleinsäuren und Detektion	32
2.2.7.1 Synthese von Gensonden für Hybridisierungen	32
2.2.7.2 Transfer von DNA auf Nitrocellulosefilter	32
2.2.7.2.1 Transfer von Bakterienkolonien auf Nitrocellulosefilter	32
2.2.7.2.2 Transfer von Phagenplaques auf Nitrocellulosefilter	33
2.2.7.2.3 Transfer von restriktionsverdauter DNA auf Nitrocellulosefilter	
["Southern Blot"]	33
2.2.7.3 Detektion hybridisierender DNA	34
2.2.8 DNA-Sequenzierung	35
2.2.8.1 Die Sequenzierungsreaktion	35
2.2.8.2 Analyse der Sequenz am ABI PRISM 310	37
2.2.8.3 Computeranalyse von DNA- und Proteinsequenzen	38
2.3 Proteinbiochemische Methoden	38
2.3.1 Bestimmung der Proteinkonzentration	38
2.3.1.1 Bestimmung der Proteinkonzentration nach Lowry	38
2.3.1.2 Bestimmung der Proteinkonzentration nach BRADFORD	39
2.3.1.3 Bestimmung eines Korrelationsfaktors zwischen Proteingehalt und	
OD _{600nm}	39
2.3.2 Proteinisolierung	39
2.3.2.1 Herstellung eines Bakterienrohextrakts	40
2.3.2.2 Bestimmung der Löslichkeit Histidin-markierter Proteine	40
2.3.2.3 Isolierung Histidin-markierter Proteine	41
2.3.2.4 Umpuffern gereinigter Proteine	41
2.3.3 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)	42

2.4 Gaschromatographische Anarytik	42
2.4.1 Gaschromatographie zur quantitativen Detektion von Isopren	43
2.4.2 Gaschromatographie zur quantitativen Detektion von Monoterpenen	44
2.4.3 Gaschromatographie mit Massenspektroskopie zum Isoprennachweis	45
2.5 Versuchsaufbau für die Messung der in vivo Isoprenfreisetzung bei	
S. leopoliensis und E. coli für den Isoprennachweis	46
2.6 Funktionalitätstests isolierter Gene und Proteine	47
2.6.1 Bestimmung des zellulären <u>Dim</u> ethylallyldiphosphat (DMADP)-Gehalts	
transformierter E. coli-Stämme	
2.6.2 Messung der Isoprenfreisetzung transformierter E. coli-Stämme	48
2.6.3 Deoxyxylulosephosphat (DXP)-abhängige NAD(P)H-Oxidation durch die	
gereinigte Deoxyxylulosephosphatreduktoisomerase (Dxr)	49
2.6.4 <u>Dim</u> ethyl <u>a</u> llyl <u>dip</u> hosphat (DMADP)-abhängige Isoprenbildung durch die	
gereinigte Isoprensynthase	50
2.6.5 Geranyldiphosphat (GDP)-abhängige Monoterpenbildung durch die	
gereinigte Isoprensynthase	51
3 Ergebnisse	52
3.1 Lichtabhängige Isoprenfreisetzung bei Synechococcus leopoliensis	52
3.1 Elettabilangige isopremiersetzung bei <i>Synechococcus teopotiensis</i>	32
3.2 Die Genbank von S. leopoliensis	55
3.3 Gaschromatographische Untersuchung der Genbank von S. leopoliensis	57
3.4 Isolierung zweier Gene des Isoprenoidstoffwechsels aus S. leopoliensis: das	
$\underline{\mathbf{D}}$ eoxy $\underline{\mathbf{x}}$ ylulosephosphat $\underline{\mathbf{s}}$ ynthase-Gen (dxs) und das $\underline{\mathbf{D}}$ eoxy $\underline{\mathbf{x}}$ ylulosephosphat-	
reduktoisomerase-Gen (dxr)	58
3.4.1 Herstellung einer dxs- und dxr-Gensonde	58
3.4.2 Verifizierung der Herkunft des dxs- und dxr-Amplifikats	62
3.4.3 Hybridisierungen der Gensonden mit der Genbank von S. leopoliensis zur	
Identifizierung dxs- und dxr-enthaltender Cosmide	64
3.4.4 Erstellung von Restriktionskarten der dxs- und dxr-tragender Cosmide sowie	
Umklonierung dxs- und dxr-tragender Fragmente	66
3.4.5 Sequenzanalyse der <i>dxs</i> - und <i>dxr</i> -enthaltenden Subklone	
3.4.5.1 Sequenzanalyse des <i>dxs</i> -enthaltenden Inserts von pCR227	
3.4.5.2 Sequenzanalyse des <i>dxr</i> -enthaltenden Inserts von pCR005	75
3.4.6. Bestimmung des zellulären DMADP-Gehalts transformierter E. coli-Stämme	82

3.4.6.1 Klonierung der Gene des dxs- und dxr-Operons in Expressionsvektoren. 83
3.4.6.2 Bestimmung des DMADP-Gehalts von E. coli-Stämmen mit über-
exprimierten Genen des dxs- oder dxr-Operons aus S. leopoliensis 83
3.4.6.3 Klonierungen zur Kombination mehrerer Gene in einer Zelle
3.4.6.4 Bestimmung des zellulären DMADP-Gehaltes mit pGSdxs
transformierten E. coli TG1-Zellen85
3.4.6.5 Bestimmung des DMADP-Gehalts von E. coli-Stämmen, die mit zwei
Genen aus S. leopoliensis transformiert wurden
3.4.7 Funktionalitätsnachweis für das <u>Deoxyxylulosephosphatreduktoisomerase</u>
Gen (<i>dxr</i>)
3.4.7.1 Klonierung der Gene dxs und dxr zur Reinigung der Genprodukte 87
3.4.7.2 Proteinisolierung der <u>Deoxyxylulosephosphatsynthase</u> (Dxs) und
<u>Deoxyxylulosephosphatreduktoisomerase</u> (Dxr) unter nativen
Bedingungen
3.4.7.3 Photometrische Messung der NAD(P)H-Oxidation durch die Dxr 89
3.4.8 Gaschromatographische Bestimmung der Isoprenfreisetzung transformierter
E. coli-Stämme 90
3.5 Isolierung des Isoprensynthase-Gens aus <i>Populus alba x Populus tremula</i> 91
3.5.1 Erstellung einer cDNA-Genbank aus P. alba x P. tremula
3.5.2 Amplifizierung eines Segments des Isoprensynthase-Gens aus Pappel-DNA
zur Verwendung als Gensonde92
3.5.3 Hybridisierung der Gensonde mit der Pappel-cDNA-Genbank zur
Identifizierung des Phagen mit der kompletten Isoprensynthase-cDNA 93
3.5.4 Sequenzanalyse der für die Isoprensynthase codierenden cDNA94
3.5.5 Funktionalitätsnachweis des Isoprensynthase-Gens
3.5.5.1 Klonierung des Isoprensynthase-Gens in Expressionsvektoren98
3.5.5.2 Gaschromatographische Messung der in vivo Isoprenfreisetzung
transformierter E. coli-Stämme98
3.5.5.3 Aktivitätsbestimmung der isolierten rekombinanten Isoprensynthase 99
3.5.5.3.1 Proteinisolierung der Isoprensynthase unter nativen Bedingungen. 100
3.5.5.3.2 Bestimmung der DMADP-abhängigen Bildung von Isopren durch
die isolierte Isoprensynthase101
3.5.5.3.3 Bestimmung der GDP-abhängigen Bildung von Monoterpenen
durch die isolierte Isoprensynthase102

4.1 Das dxs-Gen und weitere im Operon befindliche Gene aus Synecho	ococcus
leopoliensis	103
4.2 Das dxr-Gen und weitere im Operon befindliche Gene aus S. leopo	liensis 108
4.3 Die Verwandtschaft von Cyanobakterien mit Plastiden	112
4.4 Die funktionelle Bedeutung der ORFs des dxs- und dxr-Operons fü	r den MEP-
Stoffwechsel	113
4.5 Die erste erfolgreiche Isolierung eines Isoprensynthase-Gens	115
4.6 Warum emittieren Pflanzen Isopren?	119
4.7 Ausblick	120
5. Zusammenfassung	122
6 Litaratuwawajahnis	122
6. Literaturverzeichnis	123
6. Literaturverzeichnis	135
7. Anhang	135
7. Anhang7.1 Medien und Pufferlösungen	135
7. Anhang 7.1 Medien und Pufferlösungen	135 135 135 135
7. Anhang	135 135 135 135
7. Anhang	135135135135136136
7. Anhang	
7. Anhang	
7. Anhang	