Pektinolytische Enzyme aus thermophilen Bakterien: Wirkungsweise auf Bastfasern, Charakterisierung und Produktion

Vom Promotionsausschuss der
Technischen Universität Hamburg-Harburg
zur Erlangung des akademischen Grades
Doktor-Ingenieur
genehmigte Dissertation

von Philipp Klaas Göpel aus Flensburg

Vorsitzender des Prüfungsausschusses: Prof. Dr. Dr. h.c. G. Antranikian

1. Gutachter: Prof. Dr.-Ing. H. Märkl

2. Gutachter: Prof. Dr. R. Müller

Tag der mündlichen Prüfung: 22. Dezember 2005

Berichte aus der Biotechnologie

Philipp Klaas Göpel

Pektinolytische Enzyme aus thermophilen Bakterien: Wirkungsweise auf Bastfasern, Charakterisierung und Produktion

Shaker Verlag Aachen 2006

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Zugl.: Hamburg-Harburg, Techn. Univ., Diss., 2005

Copyright Shaker Verlag 2006 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-4847-1 ISSN 1434-4556

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407/9596-0 • Telefax: 02407/9596-9 Internet: www.shaker.de • eMail:info@shaker.de

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Arbeitsbereich Biotechnologie I, Bioprozess- und Bioverfahrenstechnik der Technischen Universität Hamburg-Harburg von November 2001 bis Oktober 2005.

Mein besonderer Dank gilt Prof. Dr.-Ing. Herbert Märkl, der mir als Leiter des Arbeitsbereichs die Möglichkeit der Durchführung dieser Arbeit gab, und der mir bei allen Freiheiten bezüglich der Ausrichtung der Arbeit stets im richtigen Moment beratend zur Seite stand. Das sehr gute Arbeitsklima an dem von ihm geleiteten Arbeitsbereich hat wesentlich zum Erfolg meiner Arbeit beigetragen.

Bei Prof. Dr. Rudolf Müller möchte ich mich für die Übernahme des Koreferats sowie für seine zahlreichen Anregungen bezüglich der Arbeit bedanken. Sein stetes Interesse am Fortgang der Arbeit und die Diskussionen über die Ergebnisse waren sehr hilfreich.

Herrn Prof. Dr. Dr. h.c. Garabed Antranikian danke ich für die Übernahme des Prüfungsvorsitzes.

Allen meinen Kollegen aus dem Arbeitsbereich Biotechnologie I danke ich für die freundliche Arbeitsatmosphäre, die vielen Diskussionen fachlicher aber auch nichtfachtlicher Art und die Unterstützung bei der Laborarbeit, bei der Gerätereparatur, bei der Kommunikation mit der Verwaltung etc.. Besonders nennen möchte ich hier Jürgen Kube, bei dem ich mich für die intensiven Gespräche beim täglichen Verzehr von Stiel- oder Waffeleis und die Durchsicht meines Manuskriptes bedanken möchte. Matthias Krüger und zeitweise auch Niels Johannsen hatten immer ein offenes Ohr für persönliche und weltpolitische Probleme und eine Tasse Kaffee, dafür gebührt ihnen Dank. Michael Buchmann und Burkhard Ernst waren fachlichen Diskussionen von Quantenphysik bis Astronomie stets zugeneigt und haben mein Wissen erweitert,

Auch möchte ich mich bei allen Projektpartnern innerhalb des vom Bundesministerium für Bildung und Forschung geförderten Verbundprojekts "Nachhaltige Produktion hochwertiger Naturfasern" für die Zusammenarbeit bedanken. Besonders möchte ich hier die Mitarbeiter des Faserinstituts Bremen erwähnen, die die nötigen Fasermessungen durchgeführt haben, auf denen ein großer Teil meiner Arbeit aufbaut.

Ein besonderer Dank gilt auch allen Studenten, die während ihrer Studien-, Diplom-, Bachelor- und Masterarbeiten oder als HiWi oder Praktikant ihren Teil zu den nötigen Arbeiten und Ergebnissen beigetragen haben. Besonders erwähnen möchte ich Felix Flottau, Björn Aschoff-Funke und Sascha Schrecker, die jeweils einige Monate intensiv an den Arbeiten beteiligt waren, sowie Laura Yoshimitsu, Xuefei Zhou, Takahisa Noma, Prabhala Vinaykumar, Juan Delgado Burgos und Seham Ebrahim, die mir über alle Sprachbarrieren hinweg neue Einblicke in unterschiedliche Kulturen gewährt haben. Die Arbeit mit Menschen aus aller Welt hat mir großen Spaß gemacht und meinen Blickwinkel erweitert.

Schließlich möchte ich mich noch bei meiner Familie, allen Freunden und vor allem bei Bente Andersen für ihre Unterstützung und ihre Geduld bedanken.

Hamburg, Januar 2006

Philipp Göpel

Inhaltsverzeichnis 5

Inhaltsverzeichnis

1.	Einleitung	9
1.1.	Natürliche Pflanzenfasern, Anwendung und Verarbeitung	9
1.1.1.	Bastfasern	9
1.1.2.	Marktpotential von Bastfasern	11
1.1.3.	Die traditionelle Verarbeitung von Bastfasern	12
1.1.4.	Mikrobiologischer und enzymatischer Bastfaseraufschluss	14
1.2.	Pektin und Pektinasen	14
1.2.1.	Pektin	14
1.2.2.	Pektinasen	16
1.3.	Mikrobielle Produktion und der technische Einsatz von Pektinasen	19
1.4.	Zielsetzung dieser Arbeit	21
2.	Material und Methoden	23
2.1.	Die verwendeten Mikroorganismen und ihre Stammhaltung	23
2.2.	Kultivierung in Laborreaktoren	24
2.2.1.	Kultivierung im 2-L-Folienfermenter	24
2.2.2.	Kultivierung im 10-L-Labordialysereaktor	28
2.2.3.	Eingesetzte Kulturmedien	29
2.2.4.	Für die Immobilisierung der Mikroorganismen verwendetes	
	Trägermaterial	30
2.2.5.	Analyse der Kulturflüssigkeit	31
2.2.5.1.	Bestimmung der Zelldichte	31
2.2.5.2.	Bestimmung der Biotrockenmasse	31
2.2.5.3.	Bestimmung der Uronsäurekonzentration	32
2.5.5.4.	Bestimmung des organischen Kohlenstoffgehalts (TOC)	33
2.2.5.5.	Bestimmung der Lyaseaktivität	34
2.2.5.6.	Bestimmung der Ammoniumkonzentration	36
2.2.6.	Dialyse einer Pektinlösung für den Einsatz als Substrat in der	
	kontinuierlichen Kultivierung	37
2.3.	Mikrobiologische und enzymatische Faserbehandlung	38

<u>6</u> Inhaltsverzeichnis

2.3.1.	Behandlung im Becherglas	39	
2.3.2.	Behandlung in einer umgebauten Laborfärbeanlage		
2.3.3.	Analyse der behandelten Fasern		
2.3.3.1.	Analyse des Restpektingehalts	41	
2.3.3.2.	Analyse der Faserbreitenverteilung	42	
2.4.	Charakterisierung der produzierten Lyasen		
2.4.1.	Messung der Proteinkonzentration		
2.4.2.	Proteinkonzentrierung durch Ultrafiltration		
2.4.3.	Proteintrennung	43	
2.4.3.1.	Ionenaustauschchromatographie	44	
2.4.3.2.			
2.4.3.3.			
2.4.4.	Bereitstellung unterschiedlicher Substrate für die Enzymreaktion	48	
3.	Mikrobiologische Faserbehandlung	49	
3.1.	Behandlung von Hanffasern im Becherglas		
3.2.	Behandlung von Hanffasern in einer Laboranlage		
4.	Enzymatische Faserbehandlung	58	
4.1.	Chromatographische Auftrennung von Fermentationsüberständen		
4.2.	Elektrophoretische Proteinanalyse		
4.3.	Charakterisierung der Lyasen		
4.4.	Faserbehandlung mit konzentrierten Enzymlösungen		
5.	Produktion der Pektatlyasen durch Fermentation von		
	G. thermocatenulatus PB94A	81	
5.1.	Optimierung der Pektatlyaseproduktion in Batch- und Fed-batch-		
	Fermentationen	83	
5.2.	Einsatz der Dialysefermentation		
5.3.	Kontinuierliche Kultivierung von G. thermocatenulatus PB94A		
5.3.1.	Einfache Kultivierung im Chemostaten		
5.3.2.	Einsatz der Substratdialyse		
5.3.3.	Einsatz von porösen Trägern_		
5.4.	Vergleich der unterschiedlichen Prozesse zur Pektatlyaseproduktion	110	

Inhaltsverzeichnis	7

6.	Zusammenfassung und Ausblick	112
7.	Abkürzungs- und Formelverzeichnis	114
7.1.	Formelzeichen	114
7.2.	Abkürzungen	115
7.3.	Indizes	115
8.	Literaturverzeichnis	116
Anhan	g	