Header

Shop : Details

Shop
Details
48,80 €
ISBN 978-3-8440-8442-9
Paperback
198 Seiten
113 Abbildungen
293 g
21 x 14,8 cm
Englisch
Dissertation
Februar 2022
Yanzhao Jia
Energy-Optimal Adaptive Cruise Control based on Model Predictive Control
Eco-driving functions attract the automotive industry’s attention as they can significantly improve the energy efficiency of driving in theory, while gaining the great benefits of these functions in practice was still hindered by several remaining challenges (e.g., real-time implementation of the optimal control function, trade-off of multiple control objectives.).
In this dissertation, a novel Eco-driving function named energy-optimal adaptive cruise control (EACC) is proposed, which uses model predictive control (MPC) to optimally plan the vehicle’s speed trajectory for both higher energy efficiency and better driving safety, through efficiently exploiting both road and traffic information ahead. The most suitable mathematical formulation of the MPC problem is made in this work for the optimal control of both electric vehicles and gasoline cars.
To achieve the real-time implement of MPC-based EACC, a new interior-point method is developed, which can solve the convex optimization problems faster than several state-of-the-are commercial solvers according to the benchmarking results in this dissertation.
To maximize the performance of the host car controlled by EACC, prediction models based on neural networks are developed to make a more accurate prediction of the preceding car’s behavior, which is provided to EACC as one control input.
Furthermore, a comprehensive testing of EACC is done in this work to analyze EACC’s performance with several critical judging criteria, including energy saving, driving safety, driving comfort and car-tracking ability. Based on the testing results, it is proven that the host car controlled by EACC performs considerably better than its preceding car in various real driving conditions.
Schlagwörter: Predictive Adaptive Cruise Control; Model Predictive Control; Eco-driving function; Convex Optimization; Speed Prediction
Forschungsberichte aus dem Lehrstuhl für Elektromobilität
Herausgegeben von Prof. Dr.-Ing. Daniel Görges, Kaiserslautern
Band 4
Verfügbare Online-Dokumente zu diesem Titel
DOI 10.2370/9783844084429
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten36,60 € 
 AktionDownloadZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownloadDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Export bibliographischer Daten
Teilen
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Captcha
Social Media