Header

Shop : Details

Shop
Details
49,80 €
ISBN 978-3-8440-8318-7
Paperback
264 Seiten
58 Abbildungen
393 g
21 x 14,8 cm
Englisch
Dissertation
Dezember 2021
Roman Alieiev
Predictive Vehicular Communications Using Automotive Sensor Data
Ever-increasing requirements for modern-day intelligent transportation systems bring new challenges for automotive functions. Connected vehicular applications have recently become extremely important for addressing challenges in the fields of safety and efficiency on the road. However, the use of connected applications is limited due to the unreliable nature of communication links in vehicular environments. Existing channel estimation and link adaptation approaches are mainly based on utilizing the expected channel statistics or on extrapolating the previously estimated parameters. They are, however, not well suited for vehicular communications with non-stationary channel conditions, which vary significantly within channel estimation intervals due to shadowing by other vehicles, multi-path propagation and high Doppler frequency shifts. This motivates a search for new ways to improve vehicle-to-vehicle communications.

The concept developed in this thesis addresses this problem by using data from the on-board perception system as an additional source of information to improve vehicleto-vehicle communications. The use of positioning data from on-board sensors has shown its potential in railway, cellular and satellite communications systems for scenarios where one dynamic communication partner moves along a known trajectory. In this thesis, the information about the surrounding environment from the perception system of a modern automated vehicle is used to predict changes in direct-link communications among highly dynamic partners. The perceived information is assumed to be exchanged between the functional components of the automated vehicle, including the communication subsystem, via standardized interfaces. This approach enables a range of improvements via sensor-aided predictive communication algorithms. In this thesis, the sensor-based predictive compensation of Doppler frequency shift and the prediction of predominantly line-of-sight or non-line-of-sight communication conditions are investigated as two illustrative classes of sensor-aided algorithms. In the first class, the perceived relative velocity of relevant road objects is used to improve compensation of the time-varying Doppler-shift in the received dominant signal components. In the second class, the information about the expected changes in the perceived road scenario is used to predict variations in the communication quality, which are associated with transitions between the line-of-sight and non-line-of-sight communication regions.

A thorough investigation of the selected algorithms for different road scenarios and use-cases presents a range of benefits in the use of sensor data for highly-dynamic vehicular communications. The results obtained show that the proposed sensor-based predictive methods outperform existing reference solutions in the scenarios considered and can be beneficially applied to different communication layers, data dissemination models (single-hop, multi-hop), types of cooperative vehicular applications (platooning, cooperative collision avoidance) and driving scenarios (congested traffic, free flow; rural road or highway).
Schlagwörter: Vehicular Communications; Automotive Sensor Data; Predictive Communications; 5G; V2V; V2X; Platooning; QoS; Safety
Mitteilungen aus dem Institut für Nachrichtentechnik der Technischen Universität Braunschweig
Herausgegeben von Prof. Dr.-Ing. U. Reimers, Prof. Dr.-Ing. T. Kürner, Prof. Dr.-Ing. T. Fingscheidt und Prof. Dr.-Ing. Eduard A. Jorswieck, Braunschweig
Band 69
Verfügbare Online-Dokumente zu diesem Titel
DOI 10.2370/9783844083187
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten37,35 € 
 AktionDownloadZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownloadDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Export bibliographischer Daten
Teilen
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Captcha
Social Media