Header

Shop : Details

Shop
Details
49,80 €
ISBN 978-3-8440-7036-1
Paperback
322 Seiten
110 Abbildungen
413 g
21 x 14,8 cm
Deutsch
Dissertation
November 2019
Niklas Panten
Deep Reinforcement Learning zur Betriebsoptimierung hybrider industrieller Energienetze
Gesetzliche Vorgaben, das wachsende Umweltbewusstsein von Konsumenten und steigende Energiepreise drängen Unternehmen zu mehr Nachhaltigkeit in der Produktion. Für die Versorgung von Produktionsanlagen und die Temperierung der Produktionsstätten werden in der Industrie durch interagierende Wandler, Speicher und Netze unterschiedliche Energiedienstleistungen bereitgestellt. Eine Vielzahl stochastischer Störgrößen haben dabei Einfluss auf den Wirkungsgrad und die spezifischen Betriebskosten. Aufgrund der Komplexität führen weit verbreitete konventionelle Regelansätze oft zu suboptimalem Betriebsverhalten.
In der vorliegenden Arbeit wird mit einem Deep Reinforcement Learning Ansatz ein Verfahren der Künstlichen Intelligenz untersucht, um durch Interaktion eines intelligenten Agenten mit verschiedenen Energiesystemen eine nach multiplen Zielgrößen optimierte Betriebsstrategie zu erlernen. Dafür wird ein flexibles, kaskadiertes Optimierungskonzept erarbeitet, welches eine risikoarme Implementierung und Erprobung von datengestützt erlernten Betriebsstrategien ermöglicht. Um synthetische Daten für das Training zu generieren und das Verfahren zu evaluieren, wird eine umfangreiche Simulationsbibliothek zur Erstellung digitaler Zwillinge von Energiesystemen entwickelt und durch eine effiziente Schnittstelle an die lernenden Algorithmen angebunden.
Unter bestehenden DRL-Varianten werden wesentliche Merkmale herausgearbeitet, ein leistungsstarker Algorithmus selektiert und implementiert. Nach Parametrierung des Verfahrens kann durch Simulationsstudien die Vorteilhaftigkeit durch Reduktion von Energiekosten und Lastspitzen gezeigt werden. Zeitgleich werden die Grenzen des Ansatzes aufgezeigt, Schwachstellen kritisch diskutiert und weiterer Forschungsbedarf identifiziert.
Schlagwörter: Industrie; Energiesysteme; Betriebsoptimierung; Künstliche Intelligenz; Deep Reinforcement Learning
Schriftenreihe des PTW: "Innovation Fertigungstechnik"
Herausgegeben von Prof. Dr.-Ing. Eberhard Abele, Prof. Dr.-Ing. Joachim Metternich und Prof. Dr.-Ing. Matthias Weigold, Darmstadt
Verfügbare Online-Dokumente zu diesem Titel
Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.
Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.
 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten37,35 € 
 AktionDownloadZahlungspflichtig kaufen und download der Datei 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionDownloadDownload der Datei 
     
Benutzereinstellungen für registrierte Online-Kunden (Online-Dokumente)
Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.
Benutzer
Nicht angemeldet
Export bibliographischer Daten
Teilen
Shaker Verlag GmbH
Am Langen Graben 15a
52353 Düren
  +49 2421 99011 9
Mo. - Do. 8:00 Uhr bis 16:00 Uhr
Fr. 8:00 Uhr bis 15:00 Uhr
Kontaktieren Sie uns. Wir helfen Ihnen gerne weiter.
Captcha
Social Media