• Home
  • Über uns
  • Publizieren
  • Katalog
  • Newsletter
  • Hilfe
  • Account
  • Kontakt / Impressum
Dissertation - Publikationsreihe - Tagungsband - Fachbuch - Vorlesungsskript/Lehrbuch - Zeitschrift - CD-/DVD-ROM - Online Publikation
Suche im Gesamtkatalog - Rezensionen - Lizenzen
Newsletter für Autoren und Herausgeber - Neuerscheinungsservice - Archiv
Warenkorb ansehen
Katalog : Details

Thomas Thiele

Modellierung thematischer Nähe in Organisationen durch Machine Learning

VorderseiteRückseite
 
ISBN:978-3-8440-6542-8
Reihe:Informatik
Schlagwörter:Thematische Nähe; Kooperation; Machine Learning; Text Mining
Publikationsart:Dissertation
Sprache:Deutsch
Seiten:212 Seiten
Abbildungen:56 Abbildungen
Gewicht:315 g
Format:21 x 14,8 cm
Bindung:Paperback
Preis:49,80 € / 62,30 SFr
Erscheinungsdatum:April 2019
Kaufen:
  » zzgl. Versandkosten
DOI:10.2370/9783844065428 (Online-Gesamtdokument)
Download:

Verfügbare Online-Dokumente zu diesem Titel:

Sie benötigen den Adobe Reader, um diese Dateien ansehen zu können. Hier erhalten Sie eine kleine Hilfe und Informationen, zum Download der PDF-Dateien.

Bitte beachten Sie, dass die Online-Dokumente nicht ausdruckbar und nicht editierbar sind.
Bitte beachten Sie auch weitere Informationen unter: Hilfe und Informationen.

 
 DokumentGesamtdokument 
 DateiartPDF 
 Kosten12,45 EUR 
 AktionZahlungspflichtig kaufen und anzeigen der Datei - 9,5 MB (9926682 Byte) 
 AktionZahlungspflichtig kaufen und download der Datei - 9,5 MB (9926682 Byte) 
     
 
 DokumentInhaltsverzeichnis 
 DateiartPDF 
 Kostenfrei 
 AktionAnzeigen der Datei - 277 kB (283645 Byte) 
 AktionDownload der Datei - 277 kB (283645 Byte) 
     

Benutzereinstellungen für registrierte Online-Kunden

Sie können hier Ihre Adressdaten ändern sowie bereits georderte Dokumente erneut aufrufen.

Benutzer:  Nicht angemeldet
Aktionen:  Anmelden/Registrieren
 Passwort vergessen?
Weiterempfehlung:Sie möchten diesen Titel weiterempfehlen?
RezensionsexemplarHier können Sie ein Rezensionsexemplar bestellen.
VerlinkenSie möchten diese Seite verlinken? Hier klicken.
ZusammenfassungKomplexe Problemstellungen nicht nur als disziplinäre Fragestellung zu begreifen, sondern über Fachgrenzen hinaus Lösungen zu entwickeln, erweist sich nicht nur als Trend, sondern auch als Notwendigkeit. Die Identifikation geeigneter Kooperationspartner und die Suche nach gemeinsamen Themen ist jedoch oftmals zeitaufwändig.

In dieser Dissertation wird daher ein System konzeptioniert und entwickelt, welches die Modellierung thematischer Nähe in Organisationen durch einen Machine Learning Ansatz erlaubt. Grundlage hierfür sind textuelle Daten, aus welchen zunächst mittels eines generativen Verfahrens inhärente Themen extrahiert werden. Danach werden diese Themen einem diskriminierenden Verfahren unterzogen, welches ein Matchmaking zwischen Themen unterschiedlicher organisationaler Entitäten ableitet. Die durch diese Verfahrenskette generierten Ergebnisse werden dann für den Nutzer in Form eines graphenbasierten Ansatzes visualisiert, es entsteht eine Landkarte verknüpfter Themen auf Basis eines automatisierten Prozesses.