Bayes-Netzwerke für die Kostenprognose in der frühen Phase der Produktentwicklung

Von der Fakultät für Maschinenwesen
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von Frank Dehen

Berichter: Univ.-Prof. Dr.-Ing. Jörg Feldhusen

Univ.-Prof. Dr.rer.nat. Sabina Jeschke

Tag der mündlichen Prüfung: 18. April 2012

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Schriftenreihe Produktentwicklung und Konstruktionsmethodik

Band 13

Frank Dehen

Bayes-Netzwerke für die Kostenprognose in der frühen Phase der Produktentwicklung

Shaker Verlag Aachen 2012

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2012)

Copyright Shaker Verlag 2012 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8440-1086-2 ISSN 1438-4930

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

Die vorliegende Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter am Lehrstuhl und Institut für Allgemeine Konstruktionstechnik des Maschinenbaus an der RWTH Aachen – ikt.

An dieser Stelle möchte ich die Gelegenheit nutzen und mich bei allen bedanken, die mich bei der Erstellung dieser Arbeit unterstützt haben.

Mein besonderer Dank gilt meinem Doktorvater Professor Feldhusen, für das entgegengebrachte Vertrauen und Interesse an meiner Arbeit.

Professorin Jeschke danke ich für die Übernahme des Koreferats sowie Professor Corves für die Übernahme des Vorsitzes der Prüfungskommission.

Besonders bedanken möchte ich mich auch bei meinem Bürokollegen Johannes Lemburg und bei meinem Kollegen Frederik Bungert. Durch zahlreiche Anregungen und konstruktive Diskussionen haben sie die Arbeit inspiriert und maßgeblich beeinflusst.

Weiter will ich mich bei allen Kolleginnen und Kollegen des ikt für die Unterstützung und Zusammenarbeit bedanken. Dank gebührt ebenso der Werkstatt, dem Rechnerteam und dem Sekretariat.

Schließlich will ich besonders meiner Lebensgefährtin Tanja und meinen Kindern Camilla, Lena und Johanna für die Unterstützung und Motivation während all der Zeit danken.

Aachen im April 2012

Inhaltsverzeichnis

1	Einle	eitung	1
	1.1	Problemstellung	2
	1.2	Zielsetzung	3
	1.3	Aufbau der Arbeit	4
2	Die f	rühe Phase in der Produktentwicklung	5
	2.1	Konzept – Darstellung und Eingrenzung	6
	2.2	Produktplanung und Entscheidungsprozess in der frühen Phase der	
		Produktentwicklung	9
	2.3	Einflussparameter auf die Herstellkosten	12
3	Meth	noden und Hilfen für die Kostenprognose	15
	3.1	Grundlagen der Kostenprognose	16
	3.2	Allgemeine Methoden	17
	3.3	Rechnerunterstützte Methoden	19
	3.4	Resümee und Handlungsbedarf	22
4	Baye	es-Netzwerke	25
	4.1	Einführung	26
		4.1.1 Entwicklung	26
		4.1.2 Das grafische Modell	27
	4.2	Informationsverarbeitung in Bayes-Netzwerken	29
		4.2.1 Kausale Verbindungen und Unabhängigkeit	29
		4.2.2 Informationsaustausch	32
		4.2.3 Analyse-Methoden	34
	4.3	Anwendungsbereiche	40
	4.4	Erstellen eines Bayes-Netzwerks	42
		4.4.1 Eignungsprüfung	43
		4.4.2 Schritt 1: Identifikation	45
		4.4.3 Schritt 2: Strukturierung	51
		4.4.4 Schritt 3: Quantifizierung	56
	4.5	Zusammenfassung	63
5	Kost	tenprognose mit Bayes-Netzwerken	67
	5.1	Eingrenzung	68
	5.2	Einführung	71

VIII Inhaltsverzeichnis

	5.3	letzstruktur einer Kostenprognose75
		.3.1 Ein objektorientiertes Bayes-Netzwerkmodell für die Kostenprognose77
		.3.2 Anforderungen im Bayes-Netzwerk83
		.3.3 Funktionen im Bayes-Netzwerk
		.3.4 Gestaltelemente im Bayes-Netzwerk
		.3.5 Ermittlung der Herstellkosten im Bayes-Netzwerk
		.3.6 Datenbasis für ein Bayes Netz zur Kostenprognose
	5.4	Praxisbeispiel
		.4.1 Einführung
		.4.2 Praxisbeispiel – Identifikation
		.4.3 Praxisbeispiel – Strukturierung
		.4.4 Praxisbeispiel – Quantifizierung
		.4.5 Anwendung und Analyse
	5.5	Prognose von Unentdecktem, Unvorhersehbarem und Neuem110
	5.6	ntegration der Kostenprognose in den Arbeitsablauf der Produktentwicklung 111
		.6.1 Import der Konzeptdaten in das Bayes-Netzwerk und Ergebnispräsentation 113
		.6.2 Verarbeitung der Konzeptdaten im Bayes-Netzwerk
6	Zusa	nenfassung und Ausblick115
	6.1	usammenfassung115
	6.2	usblick
7	Litera	rverzeichnis119

Abbildungsverzeichnis

Abbildung 1:		
	Konstruktionsprozess nach VDI 2221	6
Abbildung 2:	Möglichkeit der Kostenbeeinflussung im Vergleich zu den zur Verfügung	
	stehenden Daten nach Ehrlenspiel und Koller	. 10
Abbildung 3:	Modelle von Dosierspritzen [THON08] in der frühen Phase der	10
Abbildung 4:	Produktentwicklung Beispiele für Einflussparameter auf die Herstellkosten in frühen Phasen der	. 12
Applicating 4:	Produktentwicklung	13
Abbildung 5:	Kostenanalyse während der Konstruktion [VDI2235]	
Abbildung 6:	Methoden und Hilfsmittel, den Konstruktionsphasen zur Kostenanalyse	. 10
Abbildarig 0.	zugeordnet [VDI2235]	. 18
Abbildung 7:	Generelle Struktur bei der Integration eines rechnergestützten	
· ·	Kosteninformationssystems	. 20
Abbildung 8:	Auswahl bekannter Systeme für die konstruktionsbegleitende Kalkulation	. 20
Abbildung 9:	Übersicht Kapitel 4	. 25
Abbildung 10:	Bayes-Netzwerk für die Beschreibung des "Leckageproblems"	. 28
Abbildung 11:	Serielle Verknüpfung ohne harte Evidenz, nach [KJAE08]	. 30
Abbildung 12:	Serielle Verknüpfung mit harter Evidenz für "Leckage", nach [KJAE08]	. 30
Abbildung 13:	Divergente Verknüpfung ohne harte Evidenz, nach [KJAE08]	. 30
Abbildung 14:	Divergente Verknüpfung mit harter Evidenz für "Regenunwetter", nach	
	[KJAE08]	. 31
Abbildung 15:	Konvergente Verknüpfung ohne harte Evidenz, nach [KJAE08]	. 31
Abbildung 16:	Konvergente Verknüpfung mit harter Evidenz für "Leckage", nach [KJAE08]	. 31
Abbildung 17:	Message-Passing Algorithmus von Pearl, nach [BORT04]	. 33
Abbildung 18:	Bayes-Netzwerk "Lungenklinik", nach [LAUR88]	. 34
Abbildung 19:	Bayes-Netzwerk "Lungenklinik" mit Stadien und Wahrscheinlichkeiten I, nach	
	[LAUR88]	. 36
Abbildung 20:	Bayes-Netzwerk "Lungenklinik" mit Stadien und Wahrscheinlichkeiten II, nach	
ALL'III 04	[LAUR88]	
-	Inferenz im Bayes-Netzwerk "Lungenklinik" I, nach [LAUR88]	
Abbilaung 22:	Inferenz im Bayes-Netzwerk "Lungenklinik" II, nach [LAUR88]	. 38

Abbildung 23: Bayes-Netzwerk "Lungenklinik" mit neuem Einfluss auf Tuberkulose, nach	
[LAUR88]	40
Abbildung 24: Übersicht	41
Abbildung 25: Erstellen eines Bayes-Netzwerks	42
Abbildung 26: Bayes-Netzwerk - Prüfentscheidung in der Qualitätssicherung	45
Abbildung 27: Übersicht	51
Abbildung 28: Von der Ursache zur Wirkung	51
Abbildung 29: Diagnose Modell zu Abbildung 28	52
Abbildung 30: Idiom 1 - Definition und Synthese	52
Abbildung 31: Idiom 2 - Ursache-Wirkung	53
Abbildung 32: Idiom 3 – Messen	53
Abbildung 33: Idiom 4 – Induktion	54
Abbildung 34: Idiom 5 - Abstimmen	54
Abbildung 35: Verwendung von Klassen in OOBN	55
Abbildung 36: Überblick	56
Abbildung 37: Methodik des paarweisen Vergleichs – nach [CHIN09]	58
Abbildung 38: Auswahl der Projektmitarbeiter	58
Abbildung 39: Mögliche Kennzeichen der Produktqualität	59
Abbildung 40: Mögliche Kennzeichen der Produktqualität - gebündelt	60
Abbildung 41: Skala für linguistische Terme zur Beschreibung der Lautstärke nach [BREI97]	60
Abbildung 42: Skala für linguistische Wahrscheinlichkeitsterme nach [KJAER08]	61
Abbildung 43: Torten- und Balkendiagramm als Hilfestellung zum Finden der	
Wahrscheinlichkeiten	62
Abbildung 44: Gesamtverteilung mit Wahrscheinlichkeitsprofil	62
Abbildung 45: Überblick	63
Abbildung 46: Überblick Kapitel 5	68
Abbildung 47: Umsatzanteile mit Produktneuheiten im Maschinenbau 2000 bis 2009	
[ZEW11]	70
abbildung 48: Allgemeines Bayes-Netzwerk für die Kostenprognose technischer Produkte	72
Abbildung 49: Vorgabe – ein Produkt in geringer Stückzahl und anspruchsvollen	
Materialeigenschaften soll nicht mehr als üblich kosten.	
Abbildung 50: Gestaltungsvarianten einer Prinzipdarstellung nach Koller [KOLL98]	75

Abbildung 51:	Größen im Bayes-Netzwerk für die Kostenprognose	. 76
Abbildung 52:	Top-Down-Prozess eines objektorientierten Bayes-Netzwerks in Anlehnung an	70
	[FELD10]	
Abbildung 53:	Elemente eines Bayes-Netzwerks zur Kostenprognose in der Strukturebene	. 79
Abbildung 54:	Einsatz von Klassen in einem Bayes-Netzwerk für die Kostenprognose von Konzepten	. 80
Abbildung 55:	Erster Konzeptentwurf für ein neuartiges Starkstromschütz [KVMG05]	. 81
Abbildung 56:	Ausgearbeitetes Konzept für ein neuartiges Starkstromschütz [KVMG05]	. 81
Abbildung 57:	Übergeordnetes Bayes-Netzwerk zur Einschätzung der Vollständigkeit des	
	vorliegenden Konzepts	. 82
Abbildung 58:	Anforderungsfeld "Kinematik", gebündelt in einer Kenngröße	. 87
Abbildung 59:	Vernetzung im Bayes-Netzwerk mit und ohne Kenngrößen	. 87
Abbildung 60:	Vernetzung von Funktionen im Bayes-Netzwerk	. 88
Abbildung 61:	Funktionen in einer Prinziplösung – Papierlocher	. 89
Abbildung 62:	Funktionen in einer Prinziplösung – Siloanlage	. 90
Abbildung 63:	Abgleich der Prognosen zwischen den Klassen	. 91
Abbildung 64:	Beispiele für Prinzipdarstellungen in technischen Disziplinen	. 93
Abbildung 65:	Vernetzung der Gestaltmerkmale im Bayes-Netzwerk	. 94
Abbildung 66:	Ermittlung der Herstellkosten mit einem Bayes-Netzwerk	. 95
Abbildung 67:	Produktdaten für die Kostenprognose im frühen Konzeptstadium	. 96
Abbildung 68:	Übersicht	. 97
Abbildung 69:	Beispiele für Transportvorrichtungen (basierend auf Abschlussprüfungen für Industriemechaniker)	07
Abbildung 70:	Identifikation von Funktionen und Anforderungen aus einer technischer	31
Applicating 70.	Zeichnung (nach [BUND96])	. 99
Abbildung 71:	Konzeptskizze und finale Ausprägung (nach [BUND96])	100
Abbildung 72:	Übersicht	101
Abbildung 73:	Verknüpfung der Parameter im Anwendungsbeispiel	102
Abbildung 74:	Netzwerkstruktur des Anwendungsbeispiels	103
Abbildung 75:	Allgemeine Struktur einer Bauelementklasse im Anwendungsbeispiel	104
	Übersicht	
Abbilduna 77:	Wahrscheinlichkeitsverteilung des Produktgewichts	105

Abbildung 78:	Bedingte Wahrscheinlichkeiten der Materialauswahl für ein Bauelement	105
Abbildung 79:	Beispiel für die Berechnung bedingter Wahrscheinlichkeiten	105
Abbildung 80:	Beispiel für die Berechnung bedingter Wahrscheinlichkeiten	106
Abbildung 81:	Übersicht	107
Abbildung 82:	Konzept für eine neue Transportvorrichtung	108
Abbildung 83:	Instantiierung der Konzeptinformationen in die Bauelementklasse "Schieber"	109
Abbildung 84:	Prognose der Fertigungskosten (li.) und der Materialkosten (re.) für das	
	Bauelement Schieber	109
Abbildung 85:	Instantiierung der Konzeptinformationen in das Bayes-Netzwerk zur Prognose	
	der Montagekosten	110
Abbilduna 86:	Komponenten wissensbasierter Systeme nach [DOER04]	114

Abkürzungen

CAE - Computer Aided Engineering

CAM - Computer Aided Manufacturing

DMU - Digital Mock-Up

FEM - Finite-Elemente-Methode

FMEA - Failure Methods and Effect Analysis

FTA - Fault Tree Analysis

MKS - Mehrkörpersimulation

PPS - Produktions-Planungssystem

QFD - Quality Function Deployment

REFA - Verband für Arbeitsstudien und Betriebsorganisation e.V.

WHO - World Health Organization