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Abstract

The straight skeleton is a geometric structure that is similar to generalizedVoronoi
diagrams. Straight skeletons were introduced to the field of computational geom-
etry one and a half decades ago. Since thenmany industrial and academical appli-
cations emerged, such as the computation of mitered offset curves, automatic roof
construction, solving fold-and-cut problems and the reconstruction of surfaces,
to name the most prominent ones. However, there is a significant gap between
themost efficient straight-skeleton algorithms and implementations, on one hand,
and the best known lower runtime bounds on the other hand. The primary goal
of this thesis is the development of an algorithm that is suitable for implementa-
tion and efficient in terms of time and space in order to make the advantages of
straight skeletons available to real-world applications.

We start with investigations concerning upper and lower bounds on the num-
ber of so-called flip events that occur in the triangulation-based straight-skeleton
algorithm by Aichholzer and Aurenhammer. In particular, we prove the existence
of Steiner triangulations that are free of flip events. This result motivates a novel
straight-skeleton algorithm for non-degenerate simple polygons that is based on
the so-called motorcycle graph. In order to extend this algorithm to arbitrary pla-
nar straight-line graphs, we carefully generalize the motorcycle graph. This gen-
eralization leads to practical and theoretical applications: Firstly, we obtain an
extension of the alternative characterization of straight skeletons by Cheng and
Vigneron to planar straight-line graphs. Secondly, this characterization motivates
a straight-skeleton algorithm that is based on 3D graphics hardware. Thirdly, the
generalized motorcycle graph leads to a wavefront-type straight-skeleton algo-
rithm for arbitrary planar straight-line graphs. Our algorithm is easy to imple-
ment, has a theoretical worst-case time complexity of O(n2 log n) and operates in
O(n) space. Extensive runtime tests with our implementation Bone exhibit an ac-
tual runtime of O(n log n) on a database containing more than 13 500 datasets of
different characteristics. In practice, this constitutes an improvement of a linear
factor in time and space compared to the current state-of-the-art straight-skeleton
code, which is shipped with the CGAL library. In particular, Bone performs up
to 100 times faster than the current CGAL code on datasets with a few thousand



vertices, requires significant less memory and accepts more general input.

The underlying algorithm of Bone motivates the investigation of motorcycle
graphs and their practical computation. We start with stochastic considerations
of the average length of a motorcycles trace. The results obtained motivate a sim-
ple yet fast algorithm that employs geometric hashing. Runtime tests with our
implementation Moca exhibit an O(n log n) runtime on the vast majority of our
datasets. Finally, we revisit the geometric relation of straight skeletons andmotor-
cycle graph. We present an algorithm that constructs planar straight-line graphs
whose straight skeleton approximates any given motorcycle graph to an arbitrary
precision. This algorithmfinally leads to aP-completeness proof for straight skele-
tons of polygons with holes that is based on the P-completeness of motorcycle
graphs.
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