

Charakterisierung von Mikrostrukturen mit strukturorientierten Rauheitskenngrößen und Identifikation funktionsrelevanter Kenngrößen durch Reibwert-Korrelation

> Von der Fakultät für Maschinenbau der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von

Dipl.-Wirtsch.-Ing. Martin Bretschneider geboren am 30.12.1981 in Hannover

2010



| 1. Referent: Prof. DrIng. Eduard Reithmeier |                                                                     |
|---------------------------------------------|---------------------------------------------------------------------|
|                                             | Institut für Mess- und Regelungstechnik                             |
| 2. Referent:                                | Prof. DrIng. Gerhard Poll                                           |
|                                             | Institut für Maschinenelemente, Konstruktionstechnik und Tribologie |
| Vorsitz:                                    | Prof. DrIng. Berend Denkena                                         |
|                                             | Institut für Fertigungstechnik und Werkzeugmaschinen                |

Tag der Promotion: 10. Dezember 2010

Berichte aus dem Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover

**Martin Bretschneider** 

Charakterisierung von Mikrostrukturen mit strukturorientierten Rauheitskenngrößen und Identifikation funktionsrelevanter Kenngrößen durch Reibwert-Korrelation

> Shaker Verlag Aachen 2011

#### Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Zugl.: Hannover, Leibniz Univ., Diss., 2010

Umschlag:

Das Hintergrundbild zeigt eine Kollage vom Institutsgebäude an der Leibniz Universität Hannover aus verschiedenen Zeitepochen. Gestaltung: K. Salfeld

Copyright Shaker Verlag 2011 Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungsanlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 978-3-8322-9750-3 ISSN 1615-7184

Shaker Verlag GmbH • Postfach 101818 • 52018 Aachen Telefon: 02407 / 95 96 - 0 • Telefax: 02407 / 95 96 - 9 Internet: www.shaker.de • E-Mail: info@shaker.de

## Danksagung

Die vorliegende Dissertation entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Mess- und Regelungstechnik der Leibniz Universität Hannover. Dem Leiter der Instituts, Herrn Prof. Dr.-Ing. Eduard Reithmeier gilt mein großer Dank für die wissenschaftliche Förderung und für die Übernahme des ersten Referates.

Auch möchte ich mich bei Prof. Dr.-Ing. Gerhard Poll, Leiter des Instituts für Maschinenelemente, Konstruktionstechnik und Tribologie der Leibniz Universität Hannover, für die Übername des zweiten Referates bedanken. Prof. Dr.-Ing. Berend Denkena, Leiter des Instituts für Fertigungstechnik und Werkzeugmaschinen der Leibniz Universität Hannover, bedanke ich mich für den Prüfungsvorsitz.

Weiterhin möchte ich mich bei meinen Arbeitsgruppenleitern Prof. Dr.-Ing. Jörg Seewig und Dr.-Ing. Dipl.-Phys. Markus Kästner, den Mitarbeiten des Instituts für Mess- und Regelungstechnik und der anderen Institute, mit denen ich zusammengearbeitet habe, bedanken.

Natürlich möchte ich mich auch bei meiner Familie und meiner Freundin Melanie für die Unterstützung bedanken.

Hannover, September 2010

## Kurzdarstellung

In einer DFG-Forschergruppe wird untersucht inwiefern das Modifizieren der Oberfläche von Metallen die tribologischen Eigenschaften verändern kann. Hierzu werden durch zwei verschiedene Produktionsverfahren Mikrostrukturen eingebracht: Mit einem Spanprozess werden deterministische Strukturen und mit dem atmosphärischen Plasmaspritzen werden stochastische Strukturen erzeugt.

Für eine schnelle Erfassung dieser Strukturen werden optische Rauheitsmessgeräte verwendet. Hiermit kann eine große Anzahl von Mikrostrukturen gemessen werden. Diese Messdaten werden mit verschiedenen Messdatenvorverarbeitungsschritten wie die Bestimmung der Referenzebene und Segmentierung der einzelnen Mikrostrukturen durch das Schwellwertverfahren oder die Wasserscheidentransformation aufbereitet.

Zur Beschreibung der Mikrostrukturen werden verschiedene Kenngrößen wie Volumen, Fläche, Tiefe, mittlere Rauheit innerhalb und außerhalb der Strukturen, Porositäten und weitere berechnet. Anhand dieser Kenngrößen können bereits Aussagen über die Produktionsprozesse gemacht werden.

Diese Kenngrößen werden mit tribologischen Experimenten verglichen. Durch diese Korrelation werden funktionsrelevante Kenngrößen identifiziert: Bei deterministischen Strukturen hat die Tiefe einen Einfluss, denn bei hohen Relativgeschwindigkeiten verringern tiefe Strukturen den Reibwert, bei geringen Geschwindigkeiten vergrößern sie diesen. Stochastische Strukturen mit einer größeren Fläche zeigen einen kleineren Reibwert, manche stochastische Strukturen zeigen bei kleineren Tiefen einen geringeren Reibwert und eine geringere mittlere Rauheit zwischen den stochastischen Strukturen verringert den Reibwert ebenfalls.

Stichworte: 3D-Rauheitsmesstechnik, Mikrostrukturierung, tribologisch relevante Kenngrößen

## Abstract

In a research unit of the *German Research Foundation* the surface of metals is modified by microstructures in order to change the tribological properties. Two production methods are used to create these microstructures: A cutting process manufactures deterministic microstructures and atmospheric thermal spraying creates stochastic microstructures.

Optical roughness measurement devices are used to detect the large amounts of microstructures. The resulting measurement data is preprocessed by methods like the calculation of the reference plane and the segmentation of each microstructure using a threshold method or the watershed transformation.

Several characteristics of the microstructures like volume, area, depth, average roughness in and besides the microstructures, porosities and others are calculated. Using these characteristics some properties of the production process can be concluded.

These characteristics are compared to tribological experiments. Due to these correlations the functional relevant characteristics are identified: Deterministic microstructures show an influence of the depth of the microstructures since at high velocities microstructures with a larger depth decrease the friction value, whereas at low velocities they increase the friction value. Stochastic microstructures with a larger area decrease the friction value and some stochastic microstructures with a smaller depth cause a lower friction value. A smaller average roughness besides the microstructures also decrease the friction value.

**keywords:** 3d-roughness measurement, microstructuring, tribological functional characteristics

## Inhaltsverzeichnis

| Ał | obild | ungsv   | erzeichnis                                                | XV  |
|----|-------|---------|-----------------------------------------------------------|-----|
| Sy | mbo   | lverzei | ichnis 2                                                  | κIX |
| 1  | Einl  | leitung |                                                           | 1   |
| 2  | Star  | nd der  | Technik                                                   | 5   |
|    | 2.1   | 2D- ur  | nd 3D-Rauheitsmesstechnik                                 | 5   |
|    |       | 2.1.1   | Taktile Rauheitsmessgeräte                                | 5   |
|    |       | 2.1.2   | Optische Rauheitsmessgeräte                               | 6   |
|    | 2.2   | 3D-Au   | srichtung                                                 | 13  |
|    | 2.3   | Stitchi | ng                                                        | 14  |
|    | 2.4   | Segme   | entierung                                                 | 16  |
|    | 2.5   | Tribol  | ogisch funktionsrelevante Kenngrößen                      | 17  |
| 3  | Pro   | duktio  | n der Mikrostrukturen                                     | 21  |
|    | 3.1   | Produ   | ktion deterministischer Mikrostrukturen durch Mikrospanen | 21  |
|    | 3.2   | Produ   | ktion stochastischer Mikrostrukturen durch atmosphäri-    |     |
|    |       | sches   | Plasmaspritzen                                            | 24  |
|    | 3.3   | Produ   | ktion von Mikrostrukturen durch andere Verfahren          | 26  |
| 4  | Vor   | verarb  | eitung der Messdaten                                      | 27  |
|    | 4.1   | 3D-Au   | srichtung von Messungen mit großen Strukturen             | 27  |
|    |       | 4.1.1   | Ausrichtung über ein Histogramm                           | 29  |

#### Inhaltsverzeichnis

|   |     | 4.1.2  | Automatische Ausrichtung über eine Einpassung mit kom-     |    |
|---|-----|--------|------------------------------------------------------------|----|
|   |     |        | binierter Strukturerkennung                                | 31 |
|   | 4.2 | Stitch | ing von lateral groß ausgedehnten Mikrostrukturen mit      |    |
|   |     | Kenng  | größen                                                     | 35 |
|   | 4.3 | Segme  | entierung                                                  | 39 |
|   |     | 4.3.1  | Segmentierung von stochastischen Strukturen mit der Was-   |    |
|   |     |        | serscheidentransformation                                  | 40 |
|   |     | 4.3.2  | Segmentierung von deterministischen Strukturen             | 42 |
|   | 4.4 | Regio  | nen-Findung                                                | 46 |
|   |     |        |                                                            |    |
| 5 | Ken | ngröß  | en für Mikrostrukturen                                     | 51 |
|   | 5.1 | Kenng  | größen für Proben mit deterministischen und stochastischen |    |
|   |     | Strukt | turen                                                      | 51 |
|   |     | 5.1.1  | Vorverarbeitung: Querschnitte                              | 51 |
|   |     | 5.1.2  | Volumen                                                    | 53 |
|   |     | 5.1.3  | Histogrammbasierte Tiefen                                  | 54 |
|   |     | 5.1.4  | Fläche                                                     | 55 |
|   | 5.2 | Kenng  | größen für mikrogespante Proben                            | 55 |
|   |     | 5.2.1  | Längen                                                     | 55 |
|   |     | 5.2.2  | Aufwürfe                                                   | 56 |
|   |     | 5.2.3  | Flächen                                                    | 56 |
|   |     | 5.2.4  | Werkzeugradius, Spanungsdicke aus Kreisfit                 | 57 |
|   |     | 5.2.5  | Eingriffslänge                                             | 58 |
|   |     | 5.2.6  | Relatives Spanvolumen                                      | 59 |
|   |     | 5.2.7  | Rauheiten in der Struktur                                  | 60 |
|   |     | 5.2.8  | Eckenwinkel und Eckenradius                                | 60 |
|   | 5.3 | Kenng  | größen für thermisch gespritzte Proben                     | 61 |
|   |     | 5.3.1  | Porositäten                                                | 62 |
|   |     | 5.3.2  | Struktur-Rundheit                                          | 63 |
|   |     | 5.3.3  | Mittlere Rauheit abseits der Strukturen                    | 63 |
|   | 5.4 | Virtue | elle Normale                                               | 64 |
|   | 5.5 | Absta  | nd der Strukturen                                          | 66 |
|   |     |        |                                                            |    |

| 6  | Aus   | wertu   | ng der Messungen mit Kenngrößen                            | 71  |
|----|-------|---------|------------------------------------------------------------|-----|
|    | 6.1   | Progra  | amm zum Auswerten der Messungen                            | 71  |
|    | 6.2   | Auswe   | ertung der Kenngrößen für gespante Mikrostrukturen         | 73  |
|    |       | 6.2.1   | Einfluss des Eckenradius und des Spanwinkels               | 73  |
|    |       | 6.2.2   | Einfluss von Werkstoff und Spangeschwindigkeit bei der     |     |
|    |       |         | Außenstrukturierung rotationssymmetrischer Proben          | 74  |
|    |       | 6.2.3   | Einfluss von Werkstoff und Spangeschwindigkeit an ebe-     |     |
|    |       |         | nen Proben                                                 | 76  |
|    | 6.3   | Auswe   | ertung der Kenngrößen für thermisch gespritzte Mikrostruk- |     |
|    |       | turen   |                                                            | 77  |
|    |       | 6.3.1   | Einfluss der Messfeldgröße                                 | 78  |
|    |       | 6.3.2   | Kenngrößen-Kenngrößen-Diagramme                            | 80  |
|    |       | 6.3.3   | Einfluss der Schwellwerte                                  | 81  |
| 7  | Fun   | ktions  | relevante Kenngrößen durch Korrelation mit Tribome-        | -   |
|    | terv  | rersuch | ien                                                        | 87  |
|    | 7.1   | Tribol  | ogische Grundlagen                                         | 87  |
|    | 7.2   | Grund   | llagen des Verbrennungsmotors                              | 88  |
|    | 7.3   | Tribor  | neter-Versuche                                             | 89  |
|    | 7.4   | Korrel  | ation von Kenngrößen mit Tribometerversuchen               | 92  |
|    |       | 7.4.1   | Deterministische Strukturen mit verschiedenen Tiefen       | 93  |
|    |       | 7.4.2   | Stochastische Strukturen                                   | 96  |
| 8  | Zus   | amme    | nfassung                                                   | 101 |
|    | 8.1   | Ausbli  | ick                                                        | 103 |
|    |       |         |                                                            |     |
| Li | terat | urverz  | eichnis                                                    | 105 |
| Le | bens  | slauf   |                                                            | 117 |

# Abbildungsverzeichnis

| 1.1 | Energiebedarf eines PKWs                                      | 2  |
|-----|---------------------------------------------------------------|----|
| 2.1 | Weißlichtinterferometer                                       | 9  |
| 2.2 | konfokales Mikroskop                                          | 11 |
| 2.3 | chromatischer Sensor                                          | 12 |
| 3.1 | verschiedene Größen beim Spanen an der Werkzeugschneide       | 22 |
| 3.2 | schematischer Spanprozess mit der Werkzeugschneide zur Erzeu- |    |
|     | gung einer Mikrostruktur                                      | 23 |
| 3.3 | Rauheitsmessungen gespanter Mikrostrukturen                   | 23 |
| 3.4 | Prinzip des atmosphärischen Plasmaspritzens                   | 24 |
| 3.5 | thermisch gespritzte FeCr-Schichten                           | 25 |
| 4.1 | Rauheitsmessung ohne 3D-Ausrichtung                           | 28 |
| 4.2 | Rauheitsmessung mit 3D-Ausrichtung                            | 29 |
| 4.3 | unterschiedliche 3D-Ausrichtungen mit Ebeneneinpassungen bei  |    |
|     | Messungen mit großen Strukturen                               | 30 |
| 4.4 | Ausgangsmessung ohne 3D-Ausrichtung als Grundlage für wei-    |    |
|     | tere Untersuchungen                                           | 31 |
| 4.5 | grobe Einpassung mit einem Ausgleichselement zweiter Ordnung  | 32 |
| 4.6 | Strukturerkennung aus der groben Einpassung                   | 33 |
| 4.7 | Verarbeitungsmöglichkeiten der erkannten Strukturen           | 33 |
| 4.8 | feine Einpassung mit einem Ausgleichselement zweiter Ordnung  |    |
|     | ohne Berücksichtigung der Strukturen                          | 34 |

| 4.9  | Teilmessungen zum Stitching und der Verlauf der Kenngrößen      |    |
|------|-----------------------------------------------------------------|----|
|      | Strukturbreite und Querschnittfläche                            | 36 |
| 4.10 | Zusammensetzen der Teilmessungen einer deterministischen Mi-    |    |
|      | krostruktur basierend auf der Kenngröße Querschnittfläche. Das  |    |
|      | Zusammenschieben wird durch die Pfeile gezeigt.                 | 38 |
| 4.11 | Funktionsprinzip der Wasserscheidentransformation               | 41 |
| 4.12 | Segmentierung der stochastischen Strukturen                     | 42 |
| 4.13 | Vergleich von zwei Segmentierungsverfahren und den segmen-      |    |
|      | tierten Bereichen an einer deterministischen Mikrostruktur im   |    |
|      | Querschnitt                                                     | 43 |
| 4.14 | Bitmaske der Regionen aus der Messung aus Abbildung 4.2(a)      | 44 |
| 4.15 | Suchgebiete von Aufwürfen innerhalb der Messung aus Abbil-      |    |
|      | dung 4.2(a)                                                     | 45 |
| 4.16 | Bestimmen der gesamten Regionen aus den Messdaten mit Seg-      |    |
|      | mentierungsverfahren                                            | 46 |
| 4.17 | Basis- und Nachbarschaftsalgorithmus bestimmen eine Region      | 48 |
| 4.18 | Basis- und Nachbarschaftsbearbeitung zum Finden weiterer Re-    |    |
|      | gionen                                                          | 49 |
| 4.19 | erkannte Regionen der Messung aus Abbildung 4.2(a)              | 50 |
| 5.1  | Draufsicht einer schematischen deterministischen Mikrostruktur  |    |
|      | mit Schnitten und Ausrichtungswinkel                            | 52 |
| 5.2  | Interpolation der Ausdehnung eines Messpunktes in einem Schnitt | 53 |
| 5.3  | Vergleich von der Tiefe $a_p$ mit dem histogrammbasierten Wert  |    |
|      | $a_{v,hist}$ anhand einer deterministischen Mikrostruktur       | 54 |
| 5.4  | deterministische Mikrostruktur in der Draufsicht mit Kenngrößen | 56 |
| 5.5  | deterministische Mikrostruktur im Querschnitt mit Kenngrößen .  | 56 |
| 5.6  | deterministische Mikrostruktur mit Kenngrößen in drei Ansichten | 57 |
| 5.7  | deterministische Mikrostruktur im Längsschnitt mit Kenngrößen   |    |
|      | zur Schneidenbewegung und Messung mit eingepasstem Kreisfit     | 58 |
| 5.8  | deterministische Mikrostruktur im Querschnitt mit Kenngrößen    |    |
|      | zum relativen Spanvolumen                                       | 59 |

| 5.9  | deterministische Mikrostruktur im Querschnitt mit Kenngrößen .        | 61 |
|------|-----------------------------------------------------------------------|----|
| 5.10 | Erstellen von beliebigen Strukturen mit dem Vektorzeichenpro-         |    |
|      | gramm Inkscape                                                        | 64 |
| 5.11 | beispielhafte Strukturen und Anordnungen, erstellt mit dem Vek-       |    |
|      | torzeichenprogramm Inkscape (siehe Abbildung 5.10)                    | 65 |
| 5.12 | Strukturen und deren Schwerpunkte                                     | 66 |
| 5.13 | Abstände der Strukturen aus Abbildung 5.12                            | 67 |
| 5.14 | Beispiele für Abstände mit Abstandsmatrizen                           | 69 |
| 6.1  | Ablauf der Vorgänge von der Messung bis zum Ergebnis Korrelation      | 72 |
| 6.2  | verschiedene Kenngrößen bei unterschiedlichen Eckenradien $r_{\beta}$ |    |
|      | und Spanwinkeln $\gamma$                                              | 73 |
| 6.3  | Kenngröße Spanungsquerschnitt A bei verschiedenen Spanungs-           |    |
|      | dicken                                                                | 75 |
| 6.4  | Kenngröße relatives Spanvolumen über alle Querschnitte $f_{ab,total}$ |    |
|      | und Mittenrauheit in Längsrichtung $R_{a,l}$ bei unterschiedlichen    |    |
|      | Werkstoffen und Spangeschwindigkeiten                                 | 76 |
| 6.5  | verschiedene Kennwerte der Versuchsreihe an ebenen Proben             | 77 |
| 6.6  | FeCr-Messung mit stochastischen Strukturen und Histogramme            |    |
|      | von zwei Kennwerten                                                   | 78 |
| 6.7  | Histogramm des Kennwertes Fläche $A_P$ bei unterschiedlicher An-      |    |
|      | zahl von Messungen bzw. unterschiedlicher Messfeldgröße               | 79 |
| 6.8  | Einpassung einer $e^x$ -Funktion in das Histogramm des Kennwertes     |    |
|      | Fläche $A_P$                                                          | 79 |
| 6.9  | Kenngrößen-Kenngrößen-Diagramme aller Strukturen einer FeCr-          |    |
|      | Probe                                                                 | 80 |
| 6.10 | Messungen und Strukturen bei unterschiedlichen Schwellwerten          | 82 |
| 6.11 | Verlauf verschiedener Kennwerte von FeCr- und FeMo-Proben             | 83 |
| 6.12 | Verlauf verschiedener Kennwerte von FeCr- und FeMo-Proben bei         |    |
|      | unterschiedlichen Schwellwerten und Normierungen                      | 85 |
|      |                                                                       |    |

7.1 vereinfachtes Prinzip eines Verbrennungsmotors in einem Zylinder 88

| 7.2 | Tribometer TRM 5000 der Firma Wazau                                            | 89 |
|-----|--------------------------------------------------------------------------------|----|
| 7.3 | Verlauf von Stribeckkurven                                                     | 91 |
| 7.4 | Bildbetrachter mit mehreren Kenngrößen-Reibwert-Diagrammen                     | 93 |
| 7.5 | Kenngrößen-Reibwert-Diagrammen der Kenngröße $a_{p,hist}$ der de-              |    |
|     | terministischen Proben                                                         | 94 |
| 7.6 | Kenngrößen-Reibwert-Diagramme der Kenngröße A <sub>P</sub> der FeCr-           |    |
|     | Proben                                                                         | 97 |
| 7.7 | Kenngrößen-Reibwert-Diagramme der Kenngröße R <sub>a</sub> bei unter-          |    |
|     | schiedlichen Proben                                                            | 98 |
| 7.8 | Kenngrößen-Reibwert-Diagramme der Kenngröße <i>t</i> <sub>hist</sub> der FeCr- |    |
|     | Proben                                                                         | 99 |

## Symbolverzeichnis

### Allgemeine Symbole

| Symbol    | Erklärung                            |
|-----------|--------------------------------------|
| S         | Skalar s                             |
| $\vec{v}$ | Vektor $\vec{v}$                     |
| Μ         | Matrix <b>M</b>                      |
| 1         | $\mathbf{M}(x,y) = 1  \forall (x,y)$ |

### Symbole für die Produktion

| Symbol         | Erklärung      |
|----------------|----------------|
| α              | Freiwinkel     |
| $\gamma$       | Spanwinkel     |
| β              | Keilwinkel     |
| $\epsilon$     | Eckenwinkel    |
| κ              | Einstellwinkel |
| r <sub>β</sub> | Eckenradius    |

### Symbole für die Messdatenvorverarbeitung

| Symbol                       | Erklärung                                                   |
|------------------------------|-------------------------------------------------------------|
| t                            | Tiefe                                                       |
| Μ                            | alle Messdaten, also Höheninformation                       |
| $\mathbf{M}(x=1, y=2)$       | Messdaten an der Position ( $x = 1, y = 2$ ), also          |
|                              | ein Skalar                                                  |
| M(x = 17, y = 15)            | Messdaten an den Positionen ( $x = 17, y =$                 |
|                              | 15), also wieder eine Matrix, aber mit geringe-             |
|                              | rem Inhalt                                                  |
| $\mathbf{M}_{i}^{(u=1,v=1)}$ | relative Position der Messung $\mathbf{M}_i$ in einem über- |
|                              | geordneten Gitter mit der Position ( $u = 1, v = 1$ )       |
| R                            | alle Regionen                                               |
| $\mathbf{R}_i$               | einzelne Region <i>i</i> mit Messdaten                      |
| $\vec{R}_i$                  | Liste von Punkten in der Region <i>i</i>                    |
| $t_s$                        | Schwellwert für Struktur                                    |
| t <sub>s,aj</sub>            | Schwellwert für <i>j</i> -ten Aufwurf                       |
| $\vec{r}_i$                  | Liste der Elemente aus <b>R</b> , für die <b>R</b> = 1 gilt |
| SE                           | strukturierendes Element, mit dem <b>R</b> bearbeitet       |
|                              | wird                                                        |
| $\mathbf{M}_{\mathbf{R}_i}$  | Messdaten, also Höheninformation, die der Regi-             |
|                              | on $R_i$ zugehörig sind                                     |

### Symbole für die Kenngrößen

| Symbol                     | Erklärung                                                           |  |
|----------------------------|---------------------------------------------------------------------|--|
| M <sub>R<sub>i</sub></sub> | Messdaten, also Höheninformation, die der Region oder Struktur      |  |
|                            | <i>R<sub>i</sub></i> zugehörig sind                                 |  |
| <i>x</i> Auflösung         | Auflösung in lateraler <i>x</i> -Richtung oder Abstand zweier Mess- |  |
| 0                          | punkte in lateraler <i>x</i> -Richtung                              |  |
| <i>Y</i> Auflösung         | Auflösung in lateraler y-Richtung oder Abstand zweier Mess-         |  |
| 0                          | punkte in lateraler y-Richtung                                      |  |
| x <sub>Anzahl</sub>        | Anzahl der Messpunkte in lateraler x-Richtung                       |  |
| YAnzahl                    | Anzahl der Messpunkte in lateraler y-Richtung                       |  |
| $x_s$                      | x-Koordinate des Schwerpunktes einer Region                         |  |
| $y_s$                      | y-Koordinate des Schwerpunktes einer Region                         |  |
| $\vec{s}_q$                | Querschnitt                                                         |  |
| $\vec{s}_l$                | Längsschnitt                                                        |  |
| $\phi$                     | Ausrichtungswinkel der Struktur                                     |  |
| b                          | Strukturbreite                                                      |  |
| $l_E$                      | Eingriffslänge                                                      |  |
| $l_S$                      | Strukturlänge                                                       |  |
| $r_{WZ}$                   | Werkzeugradius                                                      |  |
| $\epsilon$                 | Eckenwinkel                                                         |  |
| $r_{\epsilon,WZ}$          | Eckenradius des Werkzeugs                                           |  |
| $\epsilon_{WZ}$            | Eckenwinkel des Werkzeugs                                           |  |
| a <sub>p,max</sub>         | maximale Spanungsdicke                                              |  |
| a <sub>p,hist</sub>        | histogrammbasierte Spanungsdicke                                    |  |
| a <sub>p,fit</sub>         | Spanungsdicke aus Kreisfit                                          |  |
| $f_{ab}$                   | relatives Spanvolumen                                               |  |
| fab,total                  | relatives Spanvolumen über alle Querschnitte                        |  |
| Α                          | Querschnittsfläche                                                  |  |
| $A_P$                      | projizierte Fläche                                                  |  |
| $A_E$                      | Fläche im Längsschnitt                                              |  |

#### Symbolverzeichnis

| V                     | Strukturvolumen                              |
|-----------------------|----------------------------------------------|
| b <sub>a,r</sub>      | Aufwurfbreite rechts                         |
| b <sub>a,l</sub>      | Aufwurfbreite links                          |
| h <sub>a,r</sub>      | Aufwurfhöhe rechts                           |
| $h_{a,l}$             | Aufwurfhöhe links                            |
| b <sub>a,r,hist</sub> | Aufwurfbreite rechts, histogrammbasiert      |
| b <sub>a,l,hist</sub> | Aufwurfbreite links, histogrammbasiert       |
| h <sub>a,r,hist</sub> | Aufwurfhöhe rechts, histogrammbasiert        |
| h <sub>a,l,hist</sub> | Aufwurfhöhe links, histogrammbasiert         |
| R <sub>a,q</sub>      | Mittenrauheit quer zur Schnittrichtung       |
| R <sub>a,l</sub>      | Mittenrauheit längs zur Schnittrichtung      |
| R <sub>t,q</sub>      | Rauhtiefe quer zur Schnittrichtung           |
| R <sub>t,l</sub>      | Rauhtiefe längs zur Schnittrichtung          |
| $A_V$                 | flächenhafte Porosität                       |
| $V_V$                 | volumenhafte Porosität                       |
| $V_{V,sp}$            | spezifische volumenhafte Porosität           |
| M <sub>Rund</sub>     | Struktur-Rundheit                            |
| R <sub>a</sub>        | mittlere Rauheit abseits der Strukturen      |
| d <sub>i,j</sub>      | Abstand der Strukturen <i>i</i> und <i>j</i> |
| D                     | Abstandsmatrix aller Strukturen              |

#### Symbole für die Korrelation

| Symbol | Erklärung                                                 |
|--------|-----------------------------------------------------------|
| υ      | relative Geschwindigkeit der Reibpartner                  |
| μ      | Reibwert                                                  |
| Т      | Temperatur des Schmiermittels bei den Tribometerversuchen |
| р      | Last (Druck) bei den Tribometerversuchen                  |