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Abstract

Ever growing performance requirements as well as new technologies require an
increasing number of control systems being designed on the basis of mathematical
models comprising partial differential equations or time delays. These classes of
models, and control methods adapted to them, may be expected to play an im-
portant role in high-technology applications in the next few years, similar to what
happened for nonlinear systems and nonlinear control in the last decade.

The notion of differential flatness of nonlinear finite dimensional systems, de-
scribed by ordinary differential equations, has given rise to various powerful meth-
ods for motion planning and control design. It plays an increasing role in industrial
applications of nonlinear control. Flatness based control methods place an empha-
sis on trajectory design and open-loop control. Unfortunately, this aspect has
not always attracted the consideration it requires both in the control theoretic
literature and in control education.

The careful design of feed-forward, or steering, control gains even more im-
portance in infinite dimension, namely for distributed parameter systems with
boundary control action, the mathematical models of which comprise partial dif-
ferential equations, and also for the subclass of (linear and nonlinear) time delay
systems.

As a consequence, the flatness based approach has been generalized to the
infinite dimensional case. Parameterizing the system trajectories by a so-called
flat output, for many infinite dimensional systems efficient motion planning and
open-loop (feed-forward) control design can now be achieved in a way similar
to the one followed with nonlinear flat systems. The feedback linearization and
eigenvalue assignment methods known from nonlinear finite dimensional systems
have also been shown to generalize to delay systems.

The emphasis of the present notes is put on the generalization of the flatness
property to distributed parameter systems and to its use in trajectory planning and
open-loop control design. Time invariant linear systems with spatially distributed
parameters and boundary controls are treated in a systematic manner. Basic
ingredients of the method are operational calculus, series expansions, and integral
representations. An extension to further classes of distributed parameter systems
(nonlinear, time invariant, in three space dimensions) is shown to be possible
through a discussion of several examples.

Before dealing with distributed parameter systems, the flatness based approach
to finite dimensional nonlinear systems is briefly recalled and its generalization to
linear and nonlinear systems with (constant) time delays is outlined, too.

A considerable number of examples illustrates the use of the methods proposed.






Preface

The present notes have been written for a one-week course entitled “Flatness based
control of distributed parameter systems” to be hold at the recently founded “Max
Planck Institute (MPI) for Dynamics of Complex Technical Systems” at Magde-
burg, Germany on February 24-28, 2003. It is the first institute of the Max-
Planck-Society devoted to engineering sciences and provides a highly interdisci-
plinary environment, where control engineers, biologists, mathematicians, chemists
and chemical engineers closely cooperate.

The course is organized in cooperation with J. Raisch, the head of the “Lehr-
stuhl fiir Systemtheorie technischer Prozesse, Otto-von-Guericke Universitit Mag-
deburg” and the “Systems and Control Theory Group, MPI Magdeburg”. Thanks
also to financial support by the MPI, we could gain the following lecturers for that
course:

M. Fliess, Centre de Mathématiques et de Leurs Applications, ENS Cachan, and
GAGE, Ecole Polytechnique;

H. Mounier, Centre de Robotique, Ecole des Mines de Paris;
P. Rouchon, Centre Automatique et Systémes, Ecole des Mines de Paris;

J. Winkler, Institut fiir Kristallziichtung, Berlin, and Institut fiir Regelungs- und
Steuerungstheorie, Technische Universitét Dresden;

F. Woittennek, Institut fiir Regelungs- und Steuerungstheorie, Technische Univer-
sitat Dresden,

the list being completed by myself.

The aim of the one-week course is to provide a thorough understanding of
the flatness based design for several classes of infinite dimensional systems: linear
distributed parameter systems with one dimensional space domain and lumped
(mostly boundary) control action, some extensions to other classes (nonlinear or
higher dimensional space domains, e.g.), as well as linear and nonlinear delay
systems. The course will comprise both lectures and computer exercises.

These exercises should allow the participants to deepen their understanding of
the methods discussed in the lectures by doing calculations on case studies and
simulations based on MATLAB/Simulink. Examples from various technological
domains will be treated. Another booklet [RWWO03] has been written as a support
of these exercises.

Instead of handing out a variety of certainly most interesting separate contri-
butions from each of the lecturers I felt that it might be useful to provide a single
(relatively) concise and coherent text. It largely corresponds to (the more applied)
parts of a treatise that I have submitted as a habilitation thesis (in German) to
the “Fakultdt Elektrotechnik und Informationstechnik” at TU Dresden in January
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2002, and which should be published this year. Of course, the present notes are
exhaustive neither w.r.t. the wide subject nor w.r.t. the contents of the lectures
given at the course. Hopefully, it will, nevertheless, serve as a useful introduction
and survey, and a few readers will be led to contribute to the development of fur-
ther flatness based methods and apply these methods to the control problems they
meet in their practical work.

J. Rudolph

Institut fiir Regelungs- und Steuerungstheorie
Technische Universitiat Dresden

Dresden, January 2003
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