Sensor Technologies: Impulses for the Raw Materials Industry

Karl Nienhaus, Thomas Pretz, Hermann Wotrubá
Sensor Technologies: Impulses for the Raw Materials Industry

Karl Nienhaus, Thomas Pretz, Hermann Wotruba (eds.)

Shaker Verlag
Aachen 2014
Acknowledgment

The idea to write a book about sensor technologies in the raw materials industry came up on the “Sensor-Based Sorting” conference 2012 in Aachen. This conference is organized by the Department of Processing and Recycling (I.A.R.) and the Unit for Mineral Processing (AMR) as well as the GDMB Society of Metallurgists and Miners.

The research group “Sensor technologies for Raw Materials” (SiR) at RWTH Aachen University, Germany, a team of Ph.D. candidates of three departments, namely the I.A.R., AMR and the Institute for Mining and Metallurgical Machinery (IMR), took up the task to research the most important topics and write this book.

We, the SiR team, would like to thank our professors and respective home departments for the opportunity to write this book and for the technical support and discussions: Univ.-Prof. Dr.-Ing. Karl Nienhaus (IMR), Univ.-Prof. Dr.-Ing. Thomas Pretz (I.A.R.) and Univ.-Prof. Dr.-Ing. Hermann Wotruba (AMR). They have dedicated their staff capacities and resources in support of our goal.

Further, we wish to thank all authors outside of the SiR research group. This book would not represent the whole electromagnetic spectrum without their support. Descriptions of sensor technologies as well as important applications would be missing without their input. Some of them are staff members of our home departments; others are former students and col-
leagues who now work at various private corporations. We thank all of them for their dedicated participation and full support.

Not only our professors and home departments provided technical support while writing this book. We also want to express our gratitude to our colleague Marcel Bosling, who always supported us with advice and assistance in form and content. Further, we would like to thank Christopher Robben of TOMRA Sorting and Mathilde Robben for their critical comments and help with particular questions and issues.

Special gratitude also goes to our colleague Christiane Küch who did all the technical implementation and composition of our book. Without her commitment in correcting us with patience this book would not be completed.

Finally, we would like to thank Mrs. Mary-Joan Bluemich for her assistance. She took the time to proofread our work as a native speaker. We are deeply grateful for all the comments and suggestions she gave us.
Contributors

Authors of SiR group at RWTH Aachen University

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mattias Berwanger</td>
<td>I.A.R., RWTH Aachen University</td>
</tr>
<tr>
<td>Christoph Büschgens</td>
<td>IMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Nina Fietz</td>
<td>IMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Henning Knapp</td>
<td>AMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Christiane Küch</td>
<td>IMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Kilian Neubert</td>
<td>AMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Anja Maul</td>
<td>I.A.R., RWTH Aachen University</td>
</tr>
<tr>
<td>Yvonne Schockert</td>
<td>I.A.R., RWTH Aachen University</td>
</tr>
<tr>
<td>Christian Schropp</td>
<td>AMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Manuel Warcholik</td>
<td>IMR, RWTH Aachen University</td>
</tr>
</tbody>
</table>

External authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan Berg</td>
<td>IMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Dr.-Ing. Marina Gaastra</td>
<td>Projektträger Jülich</td>
</tr>
<tr>
<td>Dr.-Ing. Martin Hahn</td>
<td>IMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Martin Köpeke</td>
<td>AMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Michael Koester</td>
<td>Student assistant at I.A.R., RWTH Aachen University</td>
</tr>
<tr>
<td>Dr.-Ing. Michael Nagel</td>
<td>AMO GmbH</td>
</tr>
<tr>
<td>Kai W. Neumann</td>
<td>IMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Karoline Raulf</td>
<td>I.A.R., RWTH Aachen University</td>
</tr>
<tr>
<td>Mathilde Robben</td>
<td>AMR, RWTH Aachen University</td>
</tr>
<tr>
<td>Stephanie Schubert</td>
<td>TOMRA Sorting</td>
</tr>
<tr>
<td>Bastian Wens</td>
<td>I.A.R., RWTH Aachen University</td>
</tr>
</tbody>
</table>
Contents

Acknowledgment iii
Contributors v
Preface xv

1 Introduction (Karoline Raulf and Marina Gaastra) 1

2 Cycle of raw materials (Henning Knapp and Christiane Küch) 7
 2.1 Extraction of raw materials (Christiane Küch, Christoph Büschgens and Marina Gaastra) ... 9
 2.2 Processing of raw materials (Henning Knapp and Christiane Küch) .. 16
 2.3 Raw material recycling (Mattias Berwanger and Henning Knapp) ... 19

3 Fields of application for sensor technologies in the raw materials industry (Mattias Berwanger and Marina Gaastra) 25
 3.1 Selective extraction (Marina Gaastra, Christoph Büschgens, Christiane Küch and Mattias Berwanger) .. 27
 3.2 Sensor-based sorting (Mattias Berwanger and Nina Fietz) .. 35
 3.3 Process control (Kilian Neubert and Marina Gaastra) ... 41
4 Technical and physical principles of sensor technologies applied in the raw materials industry (Matthias Berwanger and Marina Gaastra) 47

4.1 Principles of X-ray transmission (Martin Köpcke, Manuel Warcholik and Henning Knapp) 54

4.1.1 Functional principle 54

4.1.2 Physical principle 55

4.1.3 Components 59

4.1.4 Data analysis 61

4.1.5 State of the art 62

4.2 Principles of laser-induced fluorescence (Christiane Küch and Marina Gaastra) 64

4.2.1 Functional principle 64

4.2.2 Physical principle 65

4.2.3 Characteristic emission 67

4.2.4 Components 69

4.2.5 Data analysis 70

4.2.6 State of the art 72

4.3 Principles of laser-induced breakdown spectroscopy (Marina Gaastra and Christiane Küch) 74

4.3.1 Functional principle 74

4.3.2 Physical principle 76

4.3.3 Components 79

4.3.4 Laser 79

4.3.5 Spectrometer 81

4.3.6 Detectors 82

4.3.7 Data analysis 84

4.3.8 State of the art 85

4.4 Principles of X-ray fluorescence analysis (Kilian Neubert, Henning Knapp and Nina Fietz) 88

4.4.1 Functional principle 88

4.4.2 Physical principle 91
4.4.3 Components 93
4.4.4 Data analysis 95
4.4.5 State of the art 96
4.5 Principles of visual sensor technology (Mattias Berwanger
and Anja Maul) 101
 4.5.1 Functional principle 101
 4.5.2 Physical principle 102
 4.5.3 Characteristic emission 107
 4.5.4 Components 108
 4.5.5 Data analysis 119
 4.5.6 State of the art 120
4.6 Principles of thermal imaging (Manuel Warcholik and Nina
Fiets) .. 124
 4.6.1 Functional principle 124
 4.6.2 Physical principle 125
 4.6.3 Data analysis 128
 4.6.4 State of the art 129
4.7 Principles of near infrared (Christian Schropp, Karoline Roald
and Mathilde Robben) 131
 4.7.1 Functional principle 131
 4.7.2 Physical principle 133
 4.7.3 Components 135
 4.7.4 Data analysis 138
 4.7.5 State of the art 139
4.8 Principles of terahertz technology (Anja Maul and Michael
Nagel) .. 141
 4.8.1 Functional principle 141
 4.8.2 Physical principle 143
 4.8.3 Characteristic emission 144
 4.8.4 Components 145
 4.8.5 Data analysis 146
 4.8.6 State of the art 148
CONTENTS

4.9 Principles of radar technology *(Martin Hahn and Jan Berg)* 151
 4.9.1 Functional principle 151
 4.9.2 Physical principle 153
 4.9.3 Components .. 157
 4.9.4 Signal processing 158
 4.9.5 State of the art 159

4.10 Principles of Laser Detection and Ranging *(Kai Neumann and Martin Hahn)* 162
 4.10.1 Functional principle 162
 4.10.2 Physical principle 163
 4.10.3 Characteristic attenuation and absorption 165
 4.10.4 Components .. 166
 4.10.5 Data analysis .. 169
 4.10.6 State of the art 170

 4.11.1 Functional principle 175
 4.11.2 Physical principle 176
 4.11.3 Components .. 179
 4.11.4 Data analysis .. 182
 4.11.5 State of the art 184

4.12 Principles of Raman spectroscopy *(Nina Fietz, Christiane Kück and Martin Köpcke)* 185
 4.12.1 Functional principle 186
 4.12.2 Physical principle 187
 4.12.3 Characteristic emission 190
 4.12.4 Components .. 192
 4.12.5 Data analysis .. 194
 4.12.6 State of the art 196

5 Applications of sensor technologies in raw material extraction *(Christoph Bäschgens and Nina Fietz)* 201
5.1 Boundary layer detection and material separation using LIF
\textit{(Christiane Küch and Marina Gaastra)} 206
5.1.1 Principle of application .. 206
5.1.2 Test rig setup ... 208
5.1.3 Test series ... 210
5.1.4 Test results ... 214
5.1.5 Outlook ... 224

5.2 Boundary layer detection for shearer loader automation
\textit{(Manuel Warcholik and Nina Fietz)} 227
5.2.1 Problem description ... 227
5.2.2 Application Principle ... 228
5.2.3 Test rig setup ... 230
5.2.4 Test series ... 231
5.2.5 Data analysis ... 232
5.2.6 Project result .. 236
5.2.7 Outlook ... 237

5.3 Online analysis for mineral raw materials
\textit{(Marina Gaastra and Christiane Küch)} 238
5.3.1 Principle of application ... 239
5.3.2 Test rig setup ... 240
5.3.3 Field test series of the compact analyzer 243
5.3.4 Test results ... 247
5.3.5 Outlook ... 252

5.4 Applications of Radar
\textit{(Martin Hahn and Jan Berg)} 253
5.4.1 Principle of application .. 254
5.4.2 DBF-Sensor characteristics and test rigs 255
5.4.3 Measurements and results 256
5.4.4 Outlook ... 267

5.5 Applications of Ladar
\textit{(Kai Neumann and Martin Hahn)} 269
5.5.1 Principle of Application .. 269
5.5.2 Test rig set up ... 269
5.5.3 Test series ... 271
5.5.4 Haul truck positioning results 272
5.5.5 DTM generation results 275
5.5.6 Personnel detection results 277
5.5.7 Outlook ... 279

5.6 Infrared Time-Of-Flight cameras (Jan Berg and Kai Neumann) .. 280
5.6.1 Application-principle 280
5.6.2 Outlook ... 281

6 Application of sensor technologies in raw material processing (Christoph Bäschgens and Nina Fietz) 283
6.1 Implementation of sensor-based sorting in the minerals industry (Kilian Neubert and Nina Fietz) 287
6.2 Sensor-based sorting of copper shale (Henning Knapp) 294
6.2.1 Principle of Application 294
6.2.2 Test rig setup ... 295
6.2.3 Test series ... 296
6.2.4 Test results ... 305
6.2.5 Outlook ... 306
6.3 Dry destoning of run-of-mine coal using XRT sorting (Henning Knapp, Kilian Neubert) 307
6.3.1 Application principle 307
6.3.2 Test rig setup ... 308
6.3.3 Test series ... 310
6.3.4 Test results ... 313
6.3.5 Outlook ... 315
6.4 Applications for near infrared spectroscopy sensor-based sorting (Christian Schropp and Mathilde Robben) 316
6.4.1 Principle of Application 316
6.4.2 Test rig setup ... 318
6.4.3 Test series ... 320
6.4.4 Test results ... 320
6.4.5 Outlook ... 325

6.5 Applicability of dry sorting technologies for the separation
of rock salt (Kilian Neubert) 326

6.5.1 Separation of anhydrite and claystone to meet product
specifications ... 327

6.5.2 Test rig setup .. 328

6.5.3 Test series .. 329

6.5.4 Outlook on further applications 338

7 Applications of sensor-technologies in raw material recyc-
ing (Mattias Berwanger) 339

7.1 Enrichment of non-ferrous metals from mixed municipal solid
waste (Bastian Wens) 341

7.1.1 Raw materials and sorting tasks 341

7.1.2 Test rig setup and sorting principles 347

7.1.3 Test results .. 354

7.2 Online volumetric flow measurement (Yvonne Schockert and
Mattias Berwanger) 356

7.2.1 Application principle 356

7.2.2 Test rig setup .. 358

7.2.3 Test series and results 361

7.2.4 Outlook .. 363

7.3 Online analysis of refuse-derived fuel with near infrared tech-
nology (Stefanie Schubert and Mattias Berwanger) 364

7.3.1 Application principle 364

7.3.2 Test rig setup .. 365

7.3.3 Test series .. 367

7.3.4 Test results .. 371

7.3.5 Further developments 375

7.4 Sensor-based tantalum identification (Yvonne Schockert, Matt-
tias Berwanger and Michael Koester) 378

7.4.1 Tantalum: reserves and production 379
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.2 Test rig set up</td>
<td>385</td>
</tr>
<tr>
<td>7.4.3 Test series</td>
<td>388</td>
</tr>
<tr>
<td>7.4.4 Outlook</td>
<td>391</td>
</tr>
<tr>
<td>7.4.5 Conclusion</td>
<td>391</td>
</tr>
</tbody>
</table>

8 Conclusion *(Nina Fietz and Christoph Büschgens)* 393

List of abbreviations 401
Bibliography 409
List of figures 443
List of tables 451
Index 455